scholarly journals VARIATIONS OF IONOSPHERIC PARAMETERS OVER ALMATY (KAZAKHSTAN) IN 1999–2013

2019 ◽  
Vol 5 (4) ◽  
pp. 91-96
Author(s):  
Saule Mukasheva ◽  
Vitaliy Kapytin ◽  
Andrey Malimbaev

The paper presents the results of a study of the behavior of ionospheric parameters of the total electron content, I(t), and electron density in the maximum F2 layer, Nm, over Almaty (Kazakhstan) [43.25° N; 76.92° E] in 1999–2013. The time interval under study covers different solar activity levels. We have shown that at F10.7>175 in summer and at F10.7>225 in winter there is a saturation effect, i.e. with increasing solar activity level values of I(t) do not increase. The observed nonlinear relationship between the total electron content of the ionosphere and the solar radiation flux F10.7 results from the nonlinear relationship between the solar ultraviolet radiation and the solar radiation flux. The study of the variability of the mid-latitude ionosphere parameters during different solar and geomagnetic activity levels has shown that the standard deviation ç(x) and average shift Xave of I(t) and Nm fluctuations relative to the quiet level weakly depend on solar activity, but greatly depend on geomagnetic activity when F10.7<100.

2019 ◽  
Vol 5 (4) ◽  
pp. 110-116
Author(s):  
Saule Mukasheva ◽  
Vitaliy Kapytin ◽  
Andrey Malimbaev

The paper presents the results of a study of the behavior of ionospheric parameters of the total electron content, I(t), and electron density in the maximum F2 layer, Nm, over Almaty (Kazakhstan) [43.25° N; 76.92° E] in 1999–2013. The time interval under study covers different solar activity levels. We have shown that at F10.7>175 in summer and at F10.7>225 in winter there is a saturation effect, i.e. with increasing solar activity level values of I(t) do not increase. The observed nonlinear relationship between the total electron content of the ionosphere and the solar radiation flux F10.7 results from the nonlinear relationship between the solar ultraviolet radiation and the solar radiation flux. The study of the variability of the mid-latitude ionosphere parameters during different solar and geomagnetic activity levels has shown that the standard deviation ç(x) and average shift Xave of I(t) and Nm fluctuations relative to the quiet level weakly depend on solar activity, but greatly depend on geomagnetic activity when F10.7<100.


2008 ◽  
Vol 26 (4) ◽  
pp. 893-903 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. Sometimes the ionospheric total electron content (TEC) is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS) observations in the Asia/Australia sector as well as global ionospheric maps (GIMs) produced by Jet Propulsion Laboratory (JPL). Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA) crests, which are consistent with those low-latitude events presented by Liu et al. (2008). During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP) spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event). Further investigation is warrented to identify/separate contributions from possible sources.


2009 ◽  
Vol 43 (11) ◽  
pp. 1757-1761 ◽  
Author(s):  
O.K. Obrou ◽  
M.N. Mene ◽  
A.T. Kobea ◽  
K.Z. Zaka

2011 ◽  
Vol 29 (5) ◽  
pp. 865-873 ◽  
Author(s):  
M. P. Natali ◽  
A. Meza

Abstract. Annual, semiannual and seasonal variations of the Vertical Total Electron Content (VTEC) have been investigated during high solar activity in 2000. In this work we use Global IGS VTEC maps and Principal Component Analysis to study spatial and temporal ionospheric variability. The behavior of VTEC variations at two-hour periods, at noon and at night is analyzed. Particular characteristics associated with each period and the geomagnetic regions are highlighted. The variations at night are smaller than those obtained at noon. At noon it is possible to see patterns of the seasonal variation at high latitude, and patterns of the semiannual anomaly at low latitudes with a slow decrease towards mid latitudes. At night there is no evidence of seasonal or annual anomaly for any region, but it was possible to see the semiannual anomaly at low latitudes with a sudden decrease towards mid latitudes. In general, the semiannual behavior shows March–April equinox at least 40 % higher than September one. Similarities and differences are analyzed also with regard to the same analysis done for a period of low solar activity.


2005 ◽  
Vol 23 (9) ◽  
pp. 3027-3034 ◽  
Author(s):  
E. Blanch ◽  
D. Altadill ◽  
J. Boška ◽  
D. Burešová ◽  
M. Hernández-Pajares

Abstract. Intense late-cycle solar activity during October and November 2003 produced two strong geomagnetic storms: 28 October-5 November 2003 (October) and 19-23 November 2003 (November); both reached intense geomagnetic activity levels, Kp=9, and Kp=8+, respectively. The October 2003 geomagnetic storm was stronger, but the effects on the Earth's ionosphere in the mid-latitude European sector were more important during the November 2003 storm. The aim of this paper is to discuss two significant effects observed on the ionosphere over the mid-latitude European sector produced by the November 2003 geomagnetic storm, using data from ground ionosonde at Chilton (51.5° N; 359.4° E), Pruhonice (50.0° N; 14.6° E) and El Arenosillo (37.1° N; 353.3° E), jointly with GPS data. These effects are the presence of well developed anomalous storm Es layers observed at latitudes as low as 37° N and the presence of two thin belts: one having enhanced electron content and other, depressed electron content. Both reside over the mid-latitude European evening sector.


2007 ◽  
Vol 25 (12) ◽  
pp. 2609-2614 ◽  
Author(s):  
T. Maruyama

Abstract. A regional reference model of total electron content (TEC) was constructed using data from the GPS Earth Observation Network (GEONET), which consists of more than 1000 Global Positioning System (GPS) satellite receivers distributed over Japan. The data covered almost one solar activity period from April 1997 to June 2007. First, TECs were determined for 32 grid points, expanding from 27 to 45° N in latitude and from 127 to 145° E in longitude at 15-min intervals. Secondly, the time-latitude variation averaged over three days was determined by using the surface harmonic functional expansion. The coefficients of the expansion were then modeled by using a neural network technique with input parameters of the season (day of the year) and solar activity (F10.7 index and sunspot number). Thus, two-dimensional TEC maps (time vs. latitude) can be obtained for any given set of solar activity and day of the year.


Sign in / Sign up

Export Citation Format

Share Document