scholarly journals An On-line Feature Extraction Method for Transformer Vibration Signals

Author(s):  
Li LI ◽  
Ya-qi SONG
Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1319
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Yucai Li ◽  
Wei Lin ◽  
Jinjuan Wang

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.


2018 ◽  
Vol 11 (1) ◽  
pp. 50-70 ◽  
Author(s):  
Jooyoung Kim ◽  
Kangrok Oh ◽  
Beom-Seok Oh ◽  
Zhiping Lin ◽  
Kar-Ann Toh

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1949 ◽  
Author(s):  
Yang Yuan ◽  
Suliang Ma ◽  
Jianwen Wu ◽  
Bowen Jia ◽  
Weixin Li ◽  
...  

The reliability of gas insulated switchgear (GIS) is very important for the safe operation of power systems. However, the research on potential faults of GIS is mainly focused on partial discharge, and the research on the intelligent detection technology of the mechanical state of GIS is very scarce. Based on the abnormal vibration signals generated by a GIS fault, a fault diagnosis method consisting of a frequency feature extraction method based on coherent function (CF) and a multi-layer classifier was developed in this paper. First, the Fourier transform was used to analyze the differences and consistency in the frequency spectrum of signals. Secondly, the frequency domain commonalities of the vibration signals were extracted by using CF, and the vibration characteristics were screened twice by using the correlation threshold and frequency threshold to further select the vibration features for diagnosis. Then, a multi-layer classifier composed of two one-class support vector machines (OCSVMs) and one support vector machine (SVM) was designed to classify the faults of GIS. Finally, the feasibility of the feature extraction method was verified by experiments, and compared with other classification methods, the stability and reliability of the proposed classifier were verified, which indicates that the fault diagnosis method promotes the development of an intelligent detection technology of the mechanical state in GIS.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Wuwei Feng ◽  
Qingfeng Meng ◽  
Youbo Xie ◽  
Hong Fan

A technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.


Sign in / Sign up

Export Citation Format

Share Document