scholarly journals Monitoring of Longitudinal Temperature Variation in Tunnel in Cold Region

Author(s):  
Hao-wu LI ◽  
Qian ZHANG ◽  
Guang-yang JI
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Wang ◽  
Kaize Xie ◽  
Rong Chen ◽  
Liyang Shao ◽  
Lianshan Yan ◽  
...  

In order to evaluate the health status of continuous welded rail accurately, a deduction on the FBG sensing principle has been made with regard to the temperature variation of test specimens under different constraint conditions. A long seamless rail testing solution and its on-site application are designed based on this deduction. According to the verification experiments of sensing principle inside, the effect of the reference temperature on the FBG temperature and strain sensitivity coefficient within −30°C~30°C is not higher than 0.05%; the maximum relative error of single point between the tested and theoretical results of test specimen under constrained condition is 3.2%; and the maximum relative error of slopes of fitted straight lines based on the tested and theoretical results within the entire test temperature range is 2.3%, verifying the deduced FBG sensing principle with regard to the test specimen under constrained condition. The maximum error of the longitudinal temperature force between the on-site tested results and calculated results in long seamless rails is only 6.1 kN, the corresponding rail temperature variation is 0.3°C, and the accumulated error is controllable within 5%.


2012 ◽  
Vol 3 (1) ◽  
pp. 63-73 ◽  
Author(s):  
I. Csáky ◽  
F. Kalmár

Abstract Nowadays the facades of newly built buildings have significant glazed surfaces. The solar gains in these buildings can produce discomfort caused by direct solar radiation on the one hand and by the higher indoor air temperature on the other hand. The amplitude of the indoor air temperature variation depends on the glazed area, orientation of the facade and heat storage capacity of the building. This paper presents the results of a simulation, which were made in the Passol Laboratory of University of Debrecen in order to define the internal temperature variation. The simulation proved that the highest amplitudes of the internal temperature are obtained for East orientation of the facade. The upper acceptable limit of the internal air temperature is exceeded for each analyzed orientation: North, South, East, West. Comparing different building structures, according to the obtained results, in case of the heavy structure more cooling hours are obtained, but the energy consumption for cooling is lower.


Sign in / Sign up

Export Citation Format

Share Document