Monitoring-Assisted Derailment Prediction of a High-Speed Train Running on a Long-Span Cable-Stayed Bridge

Author(s):  
SUMEI WANG ◽  
YUANFENG DUAN ◽  
JONGDA YAU ◽  
YI-QING NI
2020 ◽  
Vol 165 ◽  
pp. 04053
Author(s):  
Long Lu

With the increase of the running speed of high-speed trains, the longitudinal vibration of the long span railway cable-stayed bridge under train loads has increased significantly. And the probability of high-speed train braking is greater than earthquake. The excessive vibration response will affect the serviceable of the cable-stayed bridge. Fluid viscous dampers (FVDs) and elastic cables (ECs) which are widely used in seismic design of the bridge are adopted to control the longitudinal vibration response of the cable-stayed bridge induced by train braking loads. The influence of the design parameters of FVDs and ECs on the response of the bridge is studied. And the effectiveness of FVDs and ECs on mitigating the longitudinal response of the bridge is also discussed. It is found that installing FVDs and ECs between the deck and the tower is very efficient in reducing the longitudinal vibration of the railway cable-stayed bridge subjected to train braking loads, especially the longitudinal displacement of the deck and the bending moment of the tower.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaopei Cai ◽  
Wanli Liu ◽  
Kaize Xie ◽  
Wenjun Zhu ◽  
Xiyuan Tan ◽  
...  

Continuous welded rail (CWR) has been widely applied to the Chinese high-speed railways. It is interesting to reduce the effect of rail longitudinal force on the long-span cable-stayed bridges. Taking the pile-soil interaction into account, the finite element model of CWR on the long-span cable-stayed bridge is established based on the bridge-track interaction theory. The rail longitudinal force can be reduced and the track stability can be improved significantly by installing Rail Expansion Joint (REJ). The layout scheme of REJ plays a controlling role on designing CWR on bridges. Results show that the unidirectional REJ should be laid on both ends of the long-span cable-stayed bridge. Switch rails of REJ are set up on the main beam, stock rails are laid on the simply supported beams and crossing over beam joints, and several-meter long small resistance fasteners need to be laid on the sides of stock rails to reduce the fixed pier longitudinal force near the main beam. The range of REJ laid on cable-stayed bridge is mainly determined by temperature, rail breaking, and seismic condition; the bending and braking loads have little influence on it. Multiple field tests are carried out to prove the validity of the numerical model and the design methodology.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Chao Chang ◽  
Liang Ling ◽  
Zhaoling Han ◽  
Kaiyun Wang ◽  
Wanming Zhai

Wheel hollow wear is a common form of wheel-surface damage in high-speed trains, which is of great concern and a potential threat to the service performance and safety of the high-speed railway system. At the same time, rail corridors in high-speed railways are extensively straightened through the addition of bridges. However, only few studies paid attention to the influence of wheel-profile wear on the train-track-bridge dynamic interaction. This paper reports a study of the high-speed train-track-bridge dynamic interactions under new and hollow worn wheel profiles. A nonlinear rigid-flexible coupled model of a Chinese high-speed train travelling on nonballasted tracks supported by a long-span continuous girder bridge is formulated. This modelling is based on the train-track-bridge interaction theory, the wheel-rail nonelliptical multipoint contact theory, and the modified Craig–Bampton modal synthesis method. The effects of wheel-rail nonlinearity caused by the wheel hollow wear are fully considered. The proposed model is applied to predict the vertical and lateral dynamic responses of the high-speed train-track-bridge system under new and worn wheel profiles, in which a high-speed train passing through a long-span continuous girder bridge at a speed of 350 km/h is considered. The numerical results show that the wheel hollow wear changes the geometric parameters of the wheel-rail contact and then deteriorates the train-track-bridge interactions. The worn wheels can increase the vibration response of the high-speed railway bridges.


Sign in / Sign up

Export Citation Format

Share Document