scholarly journals Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?

2017 ◽  
Vol 44 (3) ◽  
pp. 91-102 ◽  
Author(s):  
Alexander Lewis Peace ◽  
Gillian R. Foulger ◽  
Christian Schiffer ◽  
Ken J.W. McCaffrey

Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time.RÉSUMÉLa cassure entre le Groenland et le Canada a entraîné une expansion océanique de la mer du Labrador et de la baie de Baffin. Ces bassins océaniques sont reliés par le détroit de Davis, un haut bathymétrique constitué principalement de lithosphère continentale et de la province volcanique tertiaire de l'ouest du Groenland. Il a été suggéré qu'un panache du manteau a facilité cette cassure et généré le magmatisme associé. L’hypothèse d’une cassure produite par panache du manteau prédit que la première distension océanique, la plus importante, le magmatisme et l'expansion océanique initial se produisent là où le panache mantélique touche la croûte continentale. Or les observations dans la région de la mer du Labrador–baie de Baffin ne correspondent pas à ces prédictions. Et donc l'hypothèse du panache ne fonctionne pas dans cette région à moins que des facteurs ad hoc déterminants ne soient présents. Un modèle qui correspond mieux aux observations présuppose la présence d’une épaisse quille lithosphérique continentale d'origine orogénique sous le détroit de Davis qui aurait bloqué l’expansion océanique de la mer du Labrador vers le nord, ce qui aurait provoqué une augmentation du magmatisme localement. La lithosphère du détroit de Davis était plus épaisse et plus résistante à l’expansion océanique parce que les bandes orogéniques paléoprotérozoïques du Nagssugtoqidian et de Torngat renferment des structures défavorablement orientées par rapport au champ de contraintes d’extensions de l'époque.

2016 ◽  
Vol 36 ◽  
pp. 1-143 ◽  
Author(s):  
Robert A. Fensome ◽  
Henrik Nøhr-Hansen ◽  
Graham L. Williams

New palynological analysis of samples from 13 offshore wells on the Canadian Margin and six wells on the West Greenland Margin has led to a new event biostratigraphic framework for Cretaceous–Cenozoic strata of the Labrador Sea – Davis Strait – Baffin Bay (Labrador–Baffin Seaway) region. This framework is based on about 150 dinoflagellate cyst taxa and 30 acritarch, algal, fungal and plant microfossil (mostly miospore) taxa. In the systematics we include three new genera of dinocysts (Scalenodinium, Simplicidinium and Taurodinium), 16 new species of dinocysts (Chiropteridium gilbertii, Chytroeisphaeridia hadra, Cleistosphaeridium elegantulum, Cleistosphaeridium palmatum, Dapsilidinium pseudoinsertum, Deflandrea borealis, Evittosphaerula? foraminosa, Ginginodinium? flexidentatum, Hystrichosphaeridium quadratum, Hystrichostrogylon digitus, Impletosphaeridium apodastum, Scalenodinium scalenum, Surculosphaeridium convocatum, Talladinium pellis, Taurodinium granulatum and Trithyrodinium? conservatum), four emendations of dinocyst genera (Alterbidinium, Chatangiella, Chiropteridium and Surculosphaeridium), six new combinations for dinocyst species (Alterbidinium biaperturum, Deflandrea majae, Kleithriasphaeridium mantellii, Simplicidinium insolitum, Spongodinium grossum, Spongodinium obscurum), one new acritarch species (Fromea quadrangularis), one new miospore species (Baculatisporites crenulatus) and one new combination for miospores (Tiliaepollenites crassipites). Most of the taxa included provide age information, almost exclusively last occurrences (range ‘tops’), but some are useful mainly for environmental interpretations. Collectively, they provide a powerful tool for helping to establish the geological history of the Labrador–Baffin Seaway.  


2013 ◽  
Vol 5 (2) ◽  
pp. 917-962 ◽  
Author(s):  
M. Hosseinpour ◽  
R. D. Müller ◽  
S. E. Williams ◽  
J. M. Whittaker

Abstract. Reconstructing the opening of the Labrador Sea and Baffin Bay between Greenland and North America remains controversial. Recent seismic data suggest that magnetic lineations along the margins of the Labrador Sea, originally interpreted as seafloor spreading anomalies, may lie within the crust of the continent–ocean transition. These data also suggest a more seaward extent of continental crust within the Greenland margin near the Davis Strait than assumed in previous full-fit reconstructions. Our study focuses on reconstructing the full-fit configuration of Greenland and North America using an approach that considers continental deformation in a quantitative manner. We use gravity inversion to map crustal thickness across the conjugate margins, and assimilate observations from available seismic profiles and potential field data to constrain the likely extent of different crustal types. We derive end-member continental margin restorations following alternative interpretations of published seismic profiles. The boundaries between continental and oceanic crust (COB) are restored to their pre-stretching locations along small circle motion paths across the region of Cretaceous extension. Restored COBs are fitted quantitatively to compute alternative total-fit reconstructions. A preferred full-fit model is chosen based on the strongest compatibility with geological and geophysical data. Our preferred model suggests that (i) the COB lies oceanward of magnetic lineations interpreted as magnetic anomaly 31 (70 Ma) in the Labrador Sea, (ii) all previously identified magnetic lineations landward of anomaly 27 reflect intrusions into continental crust, and (iii) the Ungava fault zone in Davis Strait acted as a leaky transform fault during rifting. This robust plate reconstruction reduces gaps and overlaps in the Davis Strait and suggests that there is no need for alternative models proposed for reconstructions of this area including additional plate boundaries in North America or Greenland. Our favored model implies that break up and formation of continent–ocean transition (COT) first started in the southern Labrador Sea and Davis Strait around 88 Ma and then propagated north and southwards up to onset of real seafloor spreading at 63 Ma in the Labrador Sea. In the Baffin Bay, continental stretching lasted longer and actual break up and seafloor spreading started around 61 Ma (Chron 26).


2006 ◽  
Vol 11 ◽  
pp. 185-204 ◽  
Author(s):  
Robert W. Wilson ◽  
Knud Erik S. Klint ◽  
Jeroen A.M. Van Gool ◽  
Kenneth J.W. McCaffrey ◽  
Robert E. Holdsworth ◽  
...  

The complex Ungava fault zone lies in the Davis Strait and separates failed spreading centres in the Labrador Sea and Baffin Bay. This study focuses on coastal exposures east of the fault-bound Sisimiut basin, where the onshore expressions of these fault systems and the influence of pre-existing basement are examined. Regional lineament studies identify five main systems: N–S, NNE–SSW, ENE–WSW, ESE–WNW and NNW–SSE. Field studies reveal that strike-slip movements predominate, and are consistent with a ~NNE–SSW-oriented sinistral wrench system. Extensional faults trending N–S and ENE–WSW (basement-parallel), and compressional faults trending E–W, were also identified. The relative ages of these fault systems have been interpreted using cross-cutting relationships and by correlation with previously identified structures. A two-phase model for fault development fits the development of both the onshore fault systems observed in this study and regional tectonic structures offshore. The conclusions from this study show that the fault patterns and sense of movement on faults onshore reflect the stress fields that govern the opening of the Labrador Sea – Davis Strait – Baffin Bay seaway, and that the wrench couple on the Ungava transform system played a dominant role in the development of the onshore fault patterns.


1991 ◽  
Vol 48 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Pierre R. Richard

Aerial surveys for narwhals (Monodon monoceros) were conducted in August 1981, in July 1982, 1983, and 1984, and in March 1983 in the Repulse Bay area between Roes Welcome Sound and Lyon Inlet, north of Southampton Island. About 1300 narwhals were estimated to occupy waters between northern Roes Welcome Sound and Lyon Inlet in July 1982, 1983, and 1984. Narwhals were found throughout the study area but were more concentrated in three areas: northern Roes Welcome Sound, southern Frozen Strait, and, in 1984, Lyon Inlet. Only four narwhals were observed during August 1981 reconnaissance surveys of these areas. No narwhals were seen during the March 1983 survey of Roes Welcome Sound and leads of Frozen Strait. A winter concentration of narwhals observed by others in eastern Hudson Strait was of similar size to that which we observed in July, suggesting that they could be the same stock. If this is so, the northern Hudson Bay narwhals could be distinct from the stock that inhabits Davis Strait and Baffin Bay.


2011 ◽  
Vol 41 (3) ◽  
pp. 429-436 ◽  
Author(s):  
B. Curry ◽  
C. M. Lee ◽  
B. Petrie

Abstract Davis Strait volume [−2.3 ± 0.7 Sv (1 Sv ≡ 106 m3 s−1); negative sign indicates southward transport], freshwater (−116 ± 41 mSv), and heat (20 ± 9 TW) fluxes estimated from objectively mapped 2004–05 moored array data do not differ significantly from values based on a 1987–90 array but are distributed differently across the strait. The 2004–05 array provided the first year-long measurements in the upper 100 m and over the shelves. The upper 100 m accounts for 39% (−0.9 Sv) of the net volume and 59% (−69 mSv) of the net freshwater fluxes. Shelf contributions are small: 0.4 Sv (volume), 15 mSv (freshwater), and 3 TW (heat) from the West Greenland shelf and −0.1 Sv, −7 mSv, and 1 TW from the Baffin Island shelf. Contemporaneous measurements of the Baffin Bay inflows and outflows indicate that volume and freshwater budgets balance to within 26% and 4%, respectively, of the net Davis Strait outflow. Davis Strait volume and freshwater fluxes nearly equal those from Fram Strait, indicating that both are significant Arctic freshwater pathways.


1987 ◽  
Vol 136 ◽  
pp. 1-25
Author(s):  
N Hald ◽  
J.G Larsen

Data on the Tertiary basalts in the Davis Strait region are reported from two exploration wells drilled by Arco and Mobil on the West Greenland shelf. Hellefisk 1 (67°53 'N, 56°44'W), situated only 60 km east of the mid-line in Davis Strait, penetrated the upper 690 m of a subaeriallava sequence continuous with the onshore volcanics of Disko and situated beneath 2.3 km of Paleocene to Quaternary sediments. The lavas are feldspar microporphyritic tholeiites and mostly unmetamorphosed despite the presence of laumontite and prehnite in the vesicular top zones. Nukik 2 (65°38'N, 54°46'W) penetrated 150 m of hyaloclastites and tholeiitic olivine dolerite sheets, presumably sills, some 200 km further to the south. These vo1canics are also deeply buried and are of unknown extension. The drilled rocks, except for the much altered hyaloclastites in the Nukik 2 well, have low contents of Ti02 (0.99-2.03%), K2O (0.09-0.18%) and P2O5 (0.08-0.21%), La/Sm ratios less than one and 87Sr/86Sr ratios of 0.7032 to 0.7044. Chemically they are related to the MORB-like picrites of Baffin Island rather than the less depleted tholeiites of West Greenland. In both areas the MORB affinity may be related to eruptions through a strongly attenuated lithosphere associated with the opening of Baffin Bay and Davis Strait.


Sign in / Sign up

Export Citation Format

Share Document