A New Global Optimization Scheme for Quadratic Programs with Low-Rank Nonconvexity

Author(s):  
Xiaoli Cen ◽  
Yong Xia

We consider the classical convex constrained nonconvex quadratic programming problem where the Hessian matrix of the objective to be minimized has r negative eigenvalues, denoted by (QPr). Based on a biconvex programming reformulation in a slightly higher dimension, we propose a novel branch-and-bound algorithm to solve (QP1) and show that it returns an [Formula: see text]-approximate solution of (QP1) in at most [Formula: see text] iterations. We further extend the new algorithm to solve the general (QPr) with r > 1. Computational comparison shows the efficiency of our proposed global optimization method for small r. Finally, we extend the explicit relaxation approach for (QP1) to (QPr) with r > 1. Summary of Contribution: Nonconvex quadratic program (QP) is a classical optimization problem in operations research. This paper aims at globally solving the QP where the Hessian matrix of the objective to be minimized has r negative eigenvalues. It is known to be nondeterministic polynomial-time hard even when r = 1. This paper presents a novel algorithm to globally solve the QP for r = 1 and then extends to general r. Numerical results demonstrate the superiority of the proposed algorithm in comparison with state-of-the-art algorithms/software for small r.

2011 ◽  
Vol 110-116 ◽  
pp. 5118-5122
Author(s):  
Ping Li ◽  
Wan Chun Chen

The primary objective of this work is to optimize the lift-to-drag ratio of a waverider-based configuration by a new global optimization method — the adaptive surrogate model (ASM), which is based on latin hypercube computer experiment and kriging surrogate model. Additional design points will be added in experiment set of points during iterative process. Design spaces of each variable are reduced by an adaptive reduction radius, which is improved gradually by the adaptive inconsistency of optimum solutions during the optimization process. Also the search efficiency and the accuracy of the optimization are compared with another global optimization scheme. At last, this paper gives maximum L/D optimization with restrictions of actual volumetric efficiency and the total mass, which shows that the adaptive surrogate model is quite suitable for the design optimization of waveriders.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 149
Author(s):  
Yaohui Li ◽  
Jingfang Shen ◽  
Ziliang Cai ◽  
Yizhong Wu ◽  
Shuting Wang

The kriging optimization method that can only obtain one sampling point per cycle has encountered a bottleneck in practical engineering applications. How to find a suitable optimization method to generate multiple sampling points at a time while improving the accuracy of convergence and reducing the number of expensive evaluations has been a wide concern. For this reason, a kriging-assisted multi-objective constrained global optimization (KMCGO) method has been proposed. The sample data obtained from the expensive function evaluation is first used to construct or update the kriging model in each cycle. Then, kriging-based estimated target, RMSE (root mean square error), and feasibility probability are used to form three objectives, which are optimized to generate the Pareto frontier set through multi-objective optimization. Finally, the sample data from the Pareto frontier set is further screened to obtain more promising and valuable sampling points. The test results of five benchmark functions, four design problems, and a fuel economy simulation optimization prove the effectiveness of the proposed algorithm.


2015 ◽  
Vol 54 (3) ◽  
pp. 605-623 ◽  
Author(s):  
Anthony C. Didlake ◽  
Gerald M. Heymsfield ◽  
Lin Tian ◽  
Stephen R. Guimond

AbstractThe coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High-Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward-pointing and conically scanning beams. The coplane technique interpolates radar measurements onto a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared with a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.


Sign in / Sign up

Export Citation Format

Share Document