scholarly journals Antihelmintic activity of extracts of papaya and avocado seed using Caenorhabditis elegans as model

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Liset Paola Mallarino Miranda ◽  
Mario Rafael Alvear Alayon ◽  
Lesly Patricia Tejeda Benítez
2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


1998 ◽  
Vol 3 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Glenda A Walker ◽  
David W Walker ◽  
Gordon J Lithgow

2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
K Wongchai ◽  
A Schlotterer ◽  
J Lin ◽  
M Morcos ◽  
T Klein ◽  
...  

2008 ◽  
Vol 3 (S 1) ◽  
Author(s):  
Y Ibrahim ◽  
A Schlotterer ◽  
G Kukudov ◽  
P Humpert ◽  
G Rudofsky ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Musdar Musdar ◽  
Lukmanul Hakim ◽  
Juliani Juliani ◽  
Jailani Jailani

White sweet potato starch (Ipomea batatas L.) and avocado seed starch (Parsea americana Mill) derived from local plants have the potential to be developed as agricultural products. Starch is a hydrocolloid compound as a potential local resource to be utilized. Glycerol function as an anti-freezing which is hygroscopic. This study aims to determine the ratio of white sweet potato starch with avocado seed starch and the concentration of glycerol for making edible film. This study was an experiment using a completely randimized factorial design with 2 (two) main factor consisting of a comparison of white sweet potato starch and avocado seed with 3 levels: P1 = 35%:65%., P2=50%:50%., P3=65%:35% and glycerol concentration with 3 levels: G1=1%., G2=2%., G3=3%. The best result reasearch were content of 23.03% (tratment P1G1), solubility of 55.57% (treatment P3G2)., swelling test of 9.83% (treatment P2g3)., elongation of 8.18% (treatment P3G2)


Sign in / Sign up

Export Citation Format

Share Document