scholarly journals High Salt Intake Enhances Blood Pressure Increase during Development of Hypertension via Oxidative Stress in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats

2008 ◽  
Vol 31 (11) ◽  
pp. 2075-2083 ◽  
Author(s):  
Yasuaki Koga ◽  
Yoshitaka Hirooka ◽  
Shuichiro Araki ◽  
Masatsugu Nozoe ◽  
Takuya Kishi ◽  
...  
1978 ◽  
Vol 55 (s4) ◽  
pp. 247s-250s ◽  
Author(s):  
Jan Möhring ◽  
Jacqueline Kintz ◽  
Josiane Schoun

1. The role of arginine—vasopressin (AVP) and of angiotensin in blood pressure control of spontaneously hypertensive rats (SH rats, stroke-prone strain) was studied. 2. In SH rats, which drank water or 1% NaCl, plasma AVP concentrations were elevated during the benign course of hypertension and increased further when the animals entered the malignant phase. Blood pressure correlated significantly with plasma AVP concentrations in SH rats on water, but not in SH rats on saline. 3. The injection of a specific AVP antiserum lowered blood pressure significantly in SH rats on water and in SH rats on saline. 4. When the correlation between blood pressure and plasma AVP of SH rats on water was compared with the respective correlation obtained during infusion of AVP into normotensive rats, a marked shift to the left became apparent, the factor of displacement amounting to more than 1000. 5. Saralasin did not affect blood pressure of SH rats on water, except for two rats with malignant hypertension. However, in SH rats on saline, saralasin lowered blood pressure significantly. 6. It is concluded that in SH rats AVP plays an important vasopressor role in blood pressure control and that sensitization to the vasopressor effect of AVP occurs in these animals. The renin—angiotensin system is significantly involved in blood pressure control of SH rats only when they are subjected to high salt intake.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Haiyun Yu ◽  
Haiyan Xu ◽  
Xiaoni Liu ◽  
Nana Zhang ◽  
Anqi He ◽  
...  

Hydrogen sulfide (H2S) plays a crucial role in the regulation of blood pressure and oxidative stress. In the present study, we tested the hypothesis that H2S exerts its cardiovascular effects by reducing oxidative stress via inhibition of NADPH oxidase activity in the rostral ventrolateral medulla (RVLM). We examined cell distributions of cystathionine-β-synthase (CBS) and effects of H2S on reactive oxygen species (ROS) and mean arterial blood pressure (MAP) in spontaneously hypertensive rats (SHRs). We found that CBS was expressed in neurons of the RVLM, and the expression was lower in SHRs than in Wistar-Kyoto rats. Microinjection of NaHS (H2S donor), S-adenosyl-l-methionine (SAM, a CBS agonist), or Apocynin (NADPH oxidase inhibitor) into the RVLM reduced the ROS level, NADPH oxidase activity, and MAP, whereas microinjection of hydroxylamine hydrochloride (HA, a CBS inhibitor) increased MAP. Furthermore, intracerebroventricular infusion of NaHS inhibited phosphorylation ofp47phox, a key step of NADPH oxidase activation. Since decreasing ROS level in the RVLM reduces MAP and heart rate and increasing H2S reduces ROS production, we conclude that H2S exerts an antihypertensive effect via suppressing ROS production. H2S, as an antioxidant, may be a potential target for cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document