scholarly journals Chest radiograph image enhancement with wavelet decomposition and morphological operations

Author(s):  
Anthony Y. Aidoo ◽  
Matilda Wilson ◽  
Gloria A. Botchway
2017 ◽  
Vol 163 (7) ◽  
pp. 1-7 ◽  
Author(s):  
Matilda Wilson ◽  
Anthony Y. ◽  
Charles H. ◽  
Peter A.

2012 ◽  
Vol 29 (3) ◽  
pp. 244-250 ◽  
Author(s):  
L. Flöer ◽  
B. Winkel

AbstractToday, image denoising by thresholding of wavelet coefficients is a commonly used tool for 2D image enhancement. Since the data product of spectroscopic imaging surveys has two spatial dimensions and one spectral dimension, the techniques for denoising have to be adapted to this change in dimensionality. In this paper we will review the basic method of denoising data by thresholding wavelet coefficients and implement a 2D–1D wavelet decomposition to obtain an efficient way of denoising spectroscopic data cubes. We conduct different simulations to evaluate the usefulness of the algorithm as part of a source finding pipeline.


2020 ◽  
Vol 8 (5) ◽  
pp. 4430-4434

Satellite Images (SI) play a vital role in various civilian and military applications for weather forecasting, monitoring of resources of the earth, environmental studies, observing natural disasters and natural calamities, etc. When these SI are used in military applications and almost all other applications for efficient study, the big challenge is its resolution. In wavelet transforms based satellite image enhancement techniques, choosing a proper wavelet transform plays a key role and vary with the image to image. To improve the resolution, a novel robust optimized wavelet decomposition and a bicubic interpolation-based satellite image enhancement method is proposed. In this method, the Stochastic Diffusion Search (SDS) algorithm is used to get the optimized wavelet decomposition of the image into different subbands and bicubic interpolation is used to improve the resolution. Image is decomposed using the optimized wavelet filter bank based on the SDS algorithm, decomposed sub-bands are interpolated with bicubic interpolation and inverse wavelet transform is applied to compose the interpolated sub-bands into a high-resolution image. The proposed method is tested on satellite images and other images also. Compared to the proposed method with the existing methods and proved that the proposed method is superior to existing methods and applicable to any type of image.


Sign in / Sign up

Export Citation Format

Share Document