scholarly journals Whole-genome resequencing using genomic DNA extracted from horsehair roots for gene-doping control in horse sports

2020 ◽  
Vol 31 (4) ◽  
pp. 75-83
Author(s):  
Teruaki TOZAKI ◽  
Aoi OHNUMA ◽  
Mio KIKUCHI ◽  
Taichiro ISHIGE ◽  
Hironaga KAKOI ◽  
...  
Author(s):  
Teruaki Tozaki ◽  
Aoi Ohnuma ◽  
Masaki Takasu ◽  
Kotono Nakamura ◽  
Mio Kikuchi ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ali Tajabadi ◽  
Ali Esmailizadeh

Abstract Objectives Pistacia genus belongs to the flowering plants in the cashew family and contains at least 11 species. The whole-genome resequencing data of different species from Pistacia genus are described herein. The data reported here will be useful for better understand the adaptive evolution, demographic history, genetic diversity, population structure, and domestication of pistachio. Data description Genomic DNA was isolated from fresh leaves and used to construct libraries with insert size of 350 bp. Sequence libraries were made and sequenced on the Illumina Hiseq 4000 platform to produce 150 bp paired-end reads. A total number of 4,851,118,730 billion reads (ranging from 33,305,900 to 34,990,618 reads per sample) were created across all samples. We produced a total of 727.67 Gbp data which have been deposited in the Genome Sequence Archive (GSA) database with the Accession of CRA000978. All of the data are also available as the sequence read archive (SRA) format in the National Center for Biotechnology Information (NCBI) with identifier of SRP189222, mirroring our deposited data in GSA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luciano Calderón ◽  
Nuria Mauri ◽  
Claudio Muñoz ◽  
Pablo Carbonell-Bejerano ◽  
Laura Bree ◽  
...  

AbstractGrapevine cultivars are clonally propagated to preserve their varietal attributes. However, genetic variations accumulate due to the occurrence of somatic mutations. This process is anthropically influenced through plant transportation, clonal propagation and selection. Malbec is a cultivar that is well-appreciated for the elaboration of red wine. It originated in Southwestern France and was introduced in Argentina during the 1850s. In order to study the clonal genetic diversity of Malbec grapevines, we generated whole-genome resequencing data for four accessions with different clonal propagation records. A stringent variant calling procedure was established to identify reliable polymorphisms among the analyzed accessions. The latter procedure retrieved 941 single nucleotide variants (SNVs). A reduced set of the detected SNVs was corroborated through Sanger sequencing, and employed to custom-design a genotyping experiment. We successfully genotyped 214 Malbec accessions using 41 SNVs, and identified 14 genotypes that clustered in two genetically divergent clonal lineages. These lineages were associated with the time span of clonal propagation of the analyzed accessions in Argentina and Europe. Our results show the usefulness of this approach for the study of the scarce intra-cultivar genetic diversity in grapevines. We also provide evidence on how human actions might have driven the accumulation of different somatic mutations, ultimately shaping the Malbec genetic diversity pattern.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul Stothard ◽  
Jung-Woo Choi ◽  
Urmila Basu ◽  
Jennifer M Sumner-Thomson ◽  
Yan Meng ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 959
Author(s):  
Alexander Igoshin ◽  
Nikolay Yudin ◽  
Ruslan Aitnazarov ◽  
Andrey A. Yurchenko ◽  
Denis M. Larkin

Despite the economic importance of creating cold resilient cattle breeds, our knowledge of the genetic basis of adaptation to cold environments in cattle is still scarce compared to information on other economically important traits. Herein, using whole-genome resequencing of animals showing contrasting phenotypes on temperature maintenance under acute cold stress combined with the existing SNP (single nucleotide polymorphism) functional annotations, we report chromosomal regions and candidate SNPs controlling body temperature in the Siberian cattle populations. The SNP ranking procedure based on regional FST calculations, functional annotations, and the allele frequency difference between cold-tolerant and cold-sensitive groups of animals pointed to multiple candidate genes. Among these, GRIA4, COX17, MAATS1, UPK1B, IFNGR1, DDX23, PPT1, THBS1, CCL5, ATF1, PLA1A, PRKAG1, and NR1I2 were previously related to thermal adaptations in cattle. Other genes, for example KMT2D and SNRPA1, are known to be related to thermogenesis in mice and cold adaptation in common carp, respectively. This work could be useful for cattle breeding strategies in countries with harsh climates, including the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document