scholarly journals Ekstraksi Data Bangunan Dari Data Citra Unmanned Aerial Vehicle Menggunakan Metode Convolutional Neural Networks (CNN) (Studi Kasus: Desa Campurejo, Kabupaten Gresik)

Geoid ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. 81
Author(s):  
Citra Ayu Sekar Kinasih ◽  
Husnul Hidayat
2020 ◽  
Vol 6 (4) ◽  
pp. 472-486 ◽  
Author(s):  
Teja Kattenborn ◽  
Jana Eichel ◽  
Susan Wiser ◽  
Larry Burrows ◽  
Fabian E. Fassnacht ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


2021 ◽  
Vol 13 (13) ◽  
pp. 2627
Author(s):  
Marks Melo Moura ◽  
Luiz Eduardo Soares de Oliveira ◽  
Carlos Roberto Sanquetta ◽  
Alexis Bastos ◽  
Midhun Mohan ◽  
...  

Precise assessments of forest species’ composition help analyze biodiversity patterns, estimate wood stocks, and improve carbon stock estimates. Therefore, the objective of this work was to evaluate the use of high-resolution images obtained from Unmanned Aerial Vehicle (UAV) for the identification of forest species in areas of forest regeneration in the Amazon. For this purpose, convolutional neural networks (CNN) were trained using the Keras–Tensorflow package with the faster_rcnn_inception_v2_pets model. Samples of six forest species were used to train CNN. From these, attempts were made with the number of thresholds, which is the cutoff value of the function; any value below this output is considered 0, and values above are treated as an output 1; that is, values above the value stipulated in the Threshold are considered as identified species. The results showed that the reduction in the threshold decreases the accuracy of identification, as well as the overlap of the polygons of species identification. However, in comparison with the data collected in the field, it was observed that there exists a high correlation between the trees identified by the CNN and those observed in the plots. The statistical metrics used to validate the classification results showed that CNN are able to identify species with accuracy above 90%. Based on our results, which demonstrate good accuracy and precision in the identification of species, we conclude that convolutional neural networks are an effective tool in classifying objects from UAV images.


2019 ◽  
Vol 11 (9) ◽  
pp. 2580 ◽  
Author(s):  
Tainá T. Guimarães ◽  
Maurício R. Veronez ◽  
Emilie C. Koste ◽  
Eniuce M. Souza ◽  
Diego Brum ◽  
...  

The concentration of suspended solids in water is one of the quality parameters that can be recovered using remote sensing data. This paper investigates the data obtained using a sensor coupled to an unmanned aerial vehicle (UAV) in order to estimate the concentration of suspended solids in a lake in southern Brazil based on the relation of spectral images and limnological data. The water samples underwent laboratory analysis to determine the concentration of total suspended solids (TSS). The images obtained using the UAV were orthorectified and georeferenced so that the values referring to the near, green, and blue infrared channels were collected at each sampling point to relate with the laboratory data. The prediction of the TSS concentration was performed using regression analysis and artificial neural networks. The obtained results were important for two main reasons. First, although regression methods have been used in remote sensing applications, they may not be adequate to capture the linear and/or non-linear relationships of interest. Second, results show that the integration of UAV in the mapping of water bodies together with the application of neural networks in the data analysis is a promising approach to predict TSS as well as their temporal and spatial variations.


2021 ◽  
Author(s):  
Brian K. S. Isaac-Medina ◽  
Matt Poyser ◽  
Daniel Organisciak ◽  
Chris G. Willcocks ◽  
Toby P. Breckon ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 07008
Author(s):  
Phuong Nguyen ◽  
Sergey Dudkin ◽  
Chenzai Kong

Evaluation of the technical condition, reliability of the insulation of electrical equipment is an actual problem. It is confirmed by experience and statistics of operation at power plants and railway facilities. The combination of an unmanned aerial vehicle with UV-camera and software based on neural networks allows us to effectively diagnose long power lines. To increase the effectiveness of non-contact inspection of power lines, especially in hard-to-reach areas, more compact mobile solutions should be used which include an UV-camera and an unmanned aerial vehicle (UAV). The aircraft market currently has significant growth, that allows to bring the diagnostic experience to a new level by attaching an UV-camera to an aerial device, which will have a tremendous effect on examining long power lines. But we faced one problem related to the absence of any scientific basis for this method of examination, so it was decided to conduct experiments in a laboratory of St. Petersburg Polytechnic University. The results of experiments are presented in the work.


Sign in / Sign up

Export Citation Format

Share Document