Ultimate bearing capacity of conical shell foundations

2014 ◽  
Vol 52 (3) ◽  
pp. 507-523
Author(s):  
J.E. Colmenares ◽  
So-Ra Kang ◽  
Young-Jin Shin ◽  
Jong-Ho Shin
1998 ◽  
Vol 35 (5) ◽  
pp. 847-857 ◽  
Author(s):  
Adel Hanna ◽  
Mohamed Abdel-Rahman

Shells are usually used as structural elements in buildings. In Germany they showed remarkable resistance to the effects of bombing during World War II. About 1 decade later, the possibility of employing shells in foundation engineering was explored. Surveys of the literature indicate that shell foundations have been employed effectively in different parts of the world and were proven to provide an overall economical alternative to the conventional flat foundations. However, the geotechnical design of these footings remained the same as for their respective flat ones. Accordingly, the advantages of shell geometry in foundation engineering has not yet been explored in the design of these footings. The objective of the present study is to examine the overall geotechnical behavior of three types of shell foundations resting on sand under axial loading conditions, namely, triangular, conical, and pyramidal shells. Furthermore, the resulting bearing capacities and settlements will be compared with conventional strip, circular, and square flat foundations. The present paper presents an experimental study on nine foundation models tested on loose, medium, and dense sand states. The influence of shell configuration and embedment depth on the ultimate bearing capacity and settlement will be presented. The results of the present experimental investigation have shown the admirable performance of shell foundations with respect to ultimate bearing capacity and settlement characteristics. Shell foundations provide higher resistance to lateral loading as compared with flat ones, and thus they will perform better in earthquake regions.Key words: shell foundation, experimental investigation, bearing capacity, settlement, sand, geotechnical engineering.


Author(s):  
Lianheng Zhao ◽  
Shan Huang ◽  
Zhonglin Zeng ◽  
Rui Zhang ◽  
Gaopeng Tang ◽  
...  

2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


Sign in / Sign up

Export Citation Format

Share Document