Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response

2006 ◽  
Vol 2 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Pennung Warnitchai ◽  
Nam Hoang
2022 ◽  
pp. 136943322110509
Author(s):  
Xuan Zhang ◽  
Qiang Han ◽  
Kaiming Bi ◽  
Xiuli Du

Multiple vibration modes of an engineering structure might be excited by earthquake ground motions. Multiple tuned mass dampers (MTMDs) are widely used to control these multi-mode vibrations. However, in the commonly used MTMD system, the mass element in each tuned mass damper (TMD) is normally assumed to be the same. To improve the performance of MTMDs for seismic-induced vibration control, non-uniform MTMD masses are adopted in the present study to improve the mass utilization of TMD, and a location factor is proposed to determine the best location of each TMD in the MTMD system. The effectiveness of the proposed method is validated through numerical study. The results show that the proposed method effectively reduces the seismic responses of the structure induced by multiple vibration modes.


2022 ◽  
Vol 163 ◽  
pp. 108196
Author(s):  
Wenshuo Ma ◽  
Xiaoliang Jin ◽  
Jingjun Yu ◽  
Yiqing Yang ◽  
Xinjun Liu ◽  
...  

2016 ◽  
Vol 20 (9) ◽  
pp. 1375-1389 ◽  
Author(s):  
Mohammad Sabbir Rahman ◽  
Md Kamrul Hassan ◽  
Seongkyu Chang ◽  
Dookie Kim

The primary objective of this research is to find the effectiveness of an adaptive multiple tuned mass damper distributed along with the story height to control the seismic response of the structure. The seismic performance of a 10-story building was investigated, which proved the efficiency of the adaptive multiple tuned mass damper. Structures with single tuned mass damper and multiple tuned mass dampers were also modeled considering the location of the dampers at the top of the structure, whereas adaptive multiple tuned mass damper of the structure was modeled based on the story height. Selection of the location of the adaptive multiple tuned mass damper along with the story height was dominated by the modal parameters. Participation of modal mass directly controlled the number of the modes to be considered. To set the stage, a comparative study on the displacements and modal energies of the structures under the El-Centro, California, and North-Ridge earthquakes was conducted with and without various types of tuned mass dampers. The result shows a significant capability of the proposed adaptive multiple tuned mass damper as an alternative tool to reduce the earthquake responses of multi-story buildings.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Luciara Silva Vellar ◽  
Sergio Pastor Ontiveros-Pérez ◽  
Letícia Fleck Fadel Miguel ◽  
Leandro Fleck Fadel Miguel

Passive energy devices are well known due to their performance for vibration control in buildings subjected to dynamic excitations. Tuned mass damper (TMD) is one of the oldest passive devices, and it has been very much used for vibration control in buildings around the world. However, the best parameters in terms of stiffness and damping and the best position of the TMD to be installed in the structure are an area that has been studied in recent years, seeking optimal designs of such device for attenuation of structural dynamic response. Thus, in this work, a new methodology for simultaneous optimization of parameters and positions of multiple tuned mass dampers (MTMDs) in buildings subjected to earthquakes is proposed. It is important to highlight that the proposed optimization methodology considers uncertainties present in the structural parameters, in the dynamic load, and also in the MTMD design with the aim of obtaining a robust design; that is, a MTMD design that is not sensitive to the variations of the parameters involved in the dynamic behavior of the structure. For illustration purposes, the proposed methodology is applied in a 10-story building, confirming its effectiveness. Thus, it is believed that the proposed methodology can be used as a promising tool for MTMD design.


2010 ◽  
Vol 16 (5) ◽  
pp. 749-776 ◽  
Author(s):  
Nicola Carpineto ◽  
Walter Lacarbonara ◽  
Fabrizio Vestroni

Sign in / Sign up

Export Citation Format

Share Document