An improved multi-mode seismic vibration control method using multiple tuned mass dampers

2022 ◽  
pp. 136943322110509
Author(s):  
Xuan Zhang ◽  
Qiang Han ◽  
Kaiming Bi ◽  
Xiuli Du

Multiple vibration modes of an engineering structure might be excited by earthquake ground motions. Multiple tuned mass dampers (MTMDs) are widely used to control these multi-mode vibrations. However, in the commonly used MTMD system, the mass element in each tuned mass damper (TMD) is normally assumed to be the same. To improve the performance of MTMDs for seismic-induced vibration control, non-uniform MTMD masses are adopted in the present study to improve the mass utilization of TMD, and a location factor is proposed to determine the best location of each TMD in the MTMD system. The effectiveness of the proposed method is validated through numerical study. The results show that the proposed method effectively reduces the seismic responses of the structure induced by multiple vibration modes.

2016 ◽  
Vol 20 (9) ◽  
pp. 1375-1389 ◽  
Author(s):  
Mohammad Sabbir Rahman ◽  
Md Kamrul Hassan ◽  
Seongkyu Chang ◽  
Dookie Kim

The primary objective of this research is to find the effectiveness of an adaptive multiple tuned mass damper distributed along with the story height to control the seismic response of the structure. The seismic performance of a 10-story building was investigated, which proved the efficiency of the adaptive multiple tuned mass damper. Structures with single tuned mass damper and multiple tuned mass dampers were also modeled considering the location of the dampers at the top of the structure, whereas adaptive multiple tuned mass damper of the structure was modeled based on the story height. Selection of the location of the adaptive multiple tuned mass damper along with the story height was dominated by the modal parameters. Participation of modal mass directly controlled the number of the modes to be considered. To set the stage, a comparative study on the displacements and modal energies of the structures under the El-Centro, California, and North-Ridge earthquakes was conducted with and without various types of tuned mass dampers. The result shows a significant capability of the proposed adaptive multiple tuned mass damper as an alternative tool to reduce the earthquake responses of multi-story buildings.


Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Luciara Silva Vellar ◽  
Sergio Pastor Ontiveros-Pérez ◽  
Letícia Fleck Fadel Miguel ◽  
Leandro Fleck Fadel Miguel

Passive energy devices are well known due to their performance for vibration control in buildings subjected to dynamic excitations. Tuned mass damper (TMD) is one of the oldest passive devices, and it has been very much used for vibration control in buildings around the world. However, the best parameters in terms of stiffness and damping and the best position of the TMD to be installed in the structure are an area that has been studied in recent years, seeking optimal designs of such device for attenuation of structural dynamic response. Thus, in this work, a new methodology for simultaneous optimization of parameters and positions of multiple tuned mass dampers (MTMDs) in buildings subjected to earthquakes is proposed. It is important to highlight that the proposed optimization methodology considers uncertainties present in the structural parameters, in the dynamic load, and also in the MTMD design with the aim of obtaining a robust design; that is, a MTMD design that is not sensitive to the variations of the parameters involved in the dynamic behavior of the structure. For illustration purposes, the proposed methodology is applied in a 10-story building, confirming its effectiveness. Thus, it is believed that the proposed methodology can be used as a promising tool for MTMD design.


Author(s):  
Rujian Ma ◽  
Xiaobing Luo

The theoretical analysis of vibration control of multiple-degree-of-freedom structures with multi-mode vibration control systems is presented in this article. A new method of parameter optimization of the multiple-tuned mass damper system was proposed in order to obtain the best control effect, where the minimum of the dynamic magnification factor is used as the optimal objective. The numerical examples of parameter optimization indicate that optimal parameters can be obtained for the multiple-degree-of-freedom system to get satisfactory control effects. The application of the theory is used for the vibration control simulation of an offshore platform. The results indicate that reasonable control effects can be obtained by controlling the first mode and the control effects increase about 10% in average when the first two modes are controlled simultaneously.


2006 ◽  
Vol 06 (04) ◽  
pp. 541-557 ◽  
Author(s):  
CHUNXIANG LI

The dual-layer multiple tuned mass dampers (DL-MTMD) with a uniform distribution of natural frequencies are proposed, which consist of one large tuned mass damper (L-TMD) and an arbitrary number of small tuned mass dampers (S-TMD). The structure is represented by a generalized system corresponding to the specific vibration mode to be controlled. The criterion for assessing the optimum parameters and effectiveness of the DL-MTMD is based on the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure installed with the DL-MTMD. Also considered is the stroke of the DL-MTMD. The proposed DL-MTMD system is demonstrated to show higher effectiveness and robustness to the change in frequency tuning, in comparison to the multiple tuned mass dampers (MTMD) with equal total mass ratios. It is also demonstrated to be more effective than the dual tuned mass dampers (DTMD) with one large and one small tuned mass damper, but they maintain the same level of robustness to the change in frequency tuning. The DL-MTMD system can be easily manufactured as the optimum value for the linking dashpots between the structure and L-TMD is shown to be zero.


Author(s):  
Keisuke Takemoto ◽  
Masato Mori ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper shows a lumped modeling approach and a motion and vibration control method for a transportation system. The modeling approach is made on the premise that motion influences vibration, but that vibration doesn’t influence motion. To obtain well suppressed vibration and a robustness for the system, LQI control is adopted. It is shown that this theory has superior robustness for in motion and vibration control with variations of the parameters [1]. The control effectiveness is demonstrated through simulation experiments. The vibration modes that occur accordingly become flexible might cause a spillover instability problem. Thus, the purpose of the research is to control such vibration and motion using the modeling method presented by Seto, called the “reduced order physical modeling method” [2]. Computer simulation and control experiments are carried out and the effectiveness of the procedures presented is investigated.


2020 ◽  
Vol 10 (6) ◽  
pp. 1918 ◽  
Author(s):  
Rajesh Rupakhety ◽  
Said Elias ◽  
Simon Olafsson

This study explores the effectiveness of shared tuned mass damper (STMD) in reducing seismic pounding of adjacent buildings. The dynamics of STMDs is explored through numerical simulations of buildings idealized as single and multiple degree of freedom oscillators. An optimization method proposed in the literature is revisited. It is shown that the optimization results in two different solutions. The first one corresponds to the device being tuned to one of the buildings it is attached to. The second solution corresponds to a very stiff system where the TMD mass hardly moves. This solution, which has been described as an STMD in the literature, is shown to be impractical due to its high stiffness and use of a heavy stationary mass that plays no role in response mitigation but adds unnecessary load to the structure. Furthermore, it is shown that the second solution is equivalent to a viscous coupling of the two buildings. As for the properly tuned solution, i.e., the first solution, sharing the device with an adjacent building was found to provide no added benefits compared to when it is placed on one of the buildings. Based on results from a large set of real earthquake ground motions, it is shown that sharing a TMD mass with an adjacent building, in contrary to what is reported in the literature, is not an effective strategy.


Author(s):  
Nobuo Masaki ◽  
Hisashi Hirata

Recently tuned mass dampers have been installed on three-story prefabricated houses for reducing of traffic-induced vibration and improving living comfort. This tuned mass damper consists of a mass unit, spring units and laminated rubber bearings. The mass is supported by four laminated rubber bearings, and spring units are used for adjusting the natural frequency of the tuned mass damper to the optimal value. Vibration control performance of this type of tuned mass dampers is deteriorated when the natural frequency of the house is changed. To solve this problem, the authors have developed a damping coupled tuned mass damper. In this type of tuned mass damper, two mass units having slightly different natural frequencies are coupled by using a damping unit. In this paper, mechanism and vibration control performance of the damping coupled tuned mass damper are described.


Sign in / Sign up

Export Citation Format

Share Document