Analog active valve control design for non-linear semi-active resetable devices

2017 ◽  
Vol 19 (5) ◽  
pp. 487-497
Author(s):  
Geoffrey W. Rodgers ◽  
J. Geoffrey Chase ◽  
Sylvain Corman
2018 ◽  
Author(s):  
Sebastiaan Paul Mulders ◽  
Niels Frederik Boudewijn Diepeveen ◽  
Jan-Willem van Wingerden

Abstract. The business case for compact hydraulic wind turbine drivetrains is becoming ever stronger, as offshore wind turbines are getting larger in terms of size and power output. Hydraulic transmissions are generally employed in high load systems, and form an opportunity for application in multi-megawatt turbines. The Delft Offshore Turbine (DOT) is a hydraulic wind turbine concept replacing conventional drivetrain components with a single seawater pump. Pressurized seawater is directed to a combined Pelton-generator combination on a central multi-megawatt electricity generation platform. This paper presents the control design, implementation and evaluation for an intermediate version of the ideal DOT concept: an in-field 500 kW hydraulic wind turbine. It is shown that the overall drivetrain efficiency and controllability is increased by operating the rotor at maximum rotor torque in the below-rated region using a passive torque control strategy. An active valve control scheme is employed and evaluated in near-rated conditions.


2018 ◽  
Vol 3 (2) ◽  
pp. 615-638 ◽  
Author(s):  
Sebastiaan Paul Mulders ◽  
Niels Frederik Boudewijn Diepeveen ◽  
Jan-Willem van Wingerden

Abstract. The business case for compact hydraulic wind turbine drivetrains is becoming ever stronger, as offshore wind turbines are getting larger in terms of size and power output. Hydraulic transmissions are generally employed in high-load systems and form an opportunity for application in multi-megawatt turbines. The Delft Offshore Turbine (DOT) is a hydraulic wind turbine concept replacing conventional drivetrain components with a single seawater pump. Pressurized seawater is directed to a combined Pelton turbine connected to an electrical generator on a central multi-megawatt electricity generation platform. This paper presents the control design, implementation, and evaluation for an intermediate version of the ideal DOT concept: an in-field 500 kW hydraulic wind turbine. It is shown that the overall drivetrain efficiency and controllability are increased by operating the rotor at maximum rotor torque in the below-rated region using a passive torque control strategy. An active valve control scheme is employed and evaluated in near-rated conditions.


2019 ◽  
Vol 37 (4) ◽  
pp. 1049-1069 ◽  
Author(s):  
Thanh T Tran

Abstract This paper investigates an equivalence between feedback linearization and backstepping control. Implications from equivalence are that stability and performance properties of one method are the same for another method. Thus, a property known to exist only for one method could be used to prove property also holds for another. Also, a suspected advantage of one method over the other could be proven to be a false conjecture. Control laws in both approaches are achieved by coordinate transformations and non-linear feedbacks. Further, resulting non-linear feedback control law achieved by feedback linearization method matches exactly with non-linear controller achieved by the backstepping control design. This equivalence is a general analytical match within the specific class of non-linear dynamic systems under investigation. Demonstrations are considered and validated via flight control of longitudinal dynamics of a high performance aircraft simulation model. Algorithms are tested and evaluated with analytical models and non-linear closed-loop simulation.


Sign in / Sign up

Export Citation Format

Share Document