Wind tunnel tests of 3D wind loads on tall buildings based on torsional motion-induced vibrations

2016 ◽  
Vol 23 (3) ◽  
pp. 231-251
Author(s):  
Lianghao Zou ◽  
Guoji Xu ◽  
C.S. Cai ◽  
Shuguo Liang
2013 ◽  
Vol 351-352 ◽  
pp. 347-350
Author(s):  
Lun Hai Zhi

This paper present some selected results of wind tunnel tests carried out on a typical super-tall building The variations of wind loads in the three orthogonal directions with wind attack direction were evaluated. The cross-correlations among various wind loading components were presented and discussed in detail. Furthermore, the across-wind spectral characteristics were studied and an empirical formula for estimation of the across-wind overturning moment spectrum for the super-tall building is presented. The output of this study is expected to be of considerable interest and practical use to professionals and researchers involved in the design of super-tall buildings.


Author(s):  
Yi Li ◽  
Chao Li ◽  
Qiu-Sheng Li ◽  
Yong-Gui Li ◽  
Fu-Bin Chen

This paper aims to systematically study the across-wind loads of rectangular-shaped tall buildings with aerodynamic modifications and propose refined mathematic models accordingly. This study takes the CAARC (Commonwealth Advisory Aeronautical Research Council) standard tall building as a benchmark model and conducts a series of pressure measurements on the benchmark model and four CAARC models with different round corner rates (5%, 10%, 15% and 20%) in a boundary layer wind tunnel to investigate the across-wind dynamic loads of the typical tall building with different corner modifications. Based on the experimental results of the five models, base moment coefficients, power spectral densities and vertical correlation coefficients of the across-wind loads are compared and discussed. The analyzed results shown that the across-wind aerodynamic performance of the tall buildings can be effectively improved as the rounded corner rate increases. Taking the corner round rate and terrain category as two basic variables, empirical formulas for estimating the across-wind dynamic loads of CAARC standard tall buildings with various rounded corners are proposed on the basis of the wind tunnel testing results. The accuracy and applicability of the proposed formulas are verified by comparisons between the empirical formulas and the experimental results.


2010 ◽  
Vol 98 (12) ◽  
pp. 689-700 ◽  
Author(s):  
Samuel Amoroso ◽  
Kirby Hebert ◽  
Marc Levitan

2021 ◽  
Author(s):  
Zana Sulaiman

Abstract This paper presents the results of wind load computational fluid dynamics (CFD) calculations performed on the topside structures of a self-propelled wind turbine installation jack-up. The CFD calculations were performed for the jack-up topside structures with and without the deck load. An atmospheric boundary layer profile was applied for the model-scale calculations. The full range of heading angles was considered. The CFD results were validated through comparison with the wind tunnel tests which were carried out at the German-Dutch wind tunnels (DNW) in Marknesse, The Netherlands. Moreover, a comparison is presented between the applied boundary layer profiles throughout the CFD computational domain with those profiles measured in the wind tunnel. The CFD results were found to be in good agreement with the wind tunnel tests for the considered cases, verifying the feasibility of the CFD method as an important design tool for the prediction of wind loads during the design processes of these types of jack-ups.


2014 ◽  
Vol 19 (5) ◽  
pp. 565-583 ◽  
Author(s):  
Shuguo Liang ◽  
Lianghao Zou ◽  
Dahai Wang ◽  
Guoqing Huang

2011 ◽  
Vol 58 (2) ◽  
pp. 82-88 ◽  
Author(s):  
Werner Blendermann ◽  
Katrin Hellwig ◽  
Eberhard Schuckert

2014 ◽  
Vol 1057 ◽  
pp. 105-112
Author(s):  
Michal Franek ◽  
Juraj Žilinský

Wind loads on buildings are evaluated by using codes and standards. They are based on wind tunnel tests, which are performed on an isolated model in open exposure. Measurements by several researchers have shown that wind loads on real objects are considerably different than those on an isolated building. Structures around building decrease or increase the forces on building. This effect is termed interference. Interference includes geometry, layout and orientation of surrounding objects. Further aspects are direction of the wind and terrain conditions. For this reason it is necessary to evaluate interference before planning. The aim of the article is to overview the recent research, comparison between an isolated building and a group of buildings, to name the interference parameters and explain how they modify the forces on building. Also attempt to provide general recommendations for elementary models because this problem has large number of variations, especially for complicated models where it is necessary to evaluate the specific type of building. These recommendations should be used by designers and planners of the buildings.


Sign in / Sign up

Export Citation Format

Share Document