scholarly journals Numerical Simulation of Flow with Phase Change Using Phase Boundary Conditions Based on the Kinetic Theory of Gases

2012 ◽  
Vol 7 (3) ◽  
pp. 421-433 ◽  
Author(s):  
Tsubasa OHSHIMA ◽  
Takeo KAJISHIMA
Author(s):  
Azad Qazi Zade ◽  
Metin Renksizbulut ◽  
Jacob Friedman

General temperature-jump, velocity-slip, and concentration-jump conditions on solid surfaces in rarefied multi-component gas flows are developed using the kinetic theory of gases. The presented model provides general boundary conditions which can be simplified according to the problem under consideration. In some limiting cases, the results of the current work are compared to the previously available and widely used boundary conditions reported in the literature. The details of the mathematical procedure are also provided to give a better insight about the physical importance of each term in the slip/jump boundary conditions. Also the disagreements between previously reported results are investigated to arrive at the most proper expressions for the slip/jump boundary conditions. The temperature-jump boundary condition is also modified to handle polyatomic gas flows unlike previously reported studies which were mostly concerned with monatomic gases.


1971 ◽  
Vol 26 (10) ◽  
pp. 1708-1712 ◽  
Author(s):  
S. K. Loyalka

Abstract It is shown that the work of Cercignani and Tironi on Maxwell's boundary conditions method can be improved in a simple and logical way. The technique for improvement is illustrated by a study of the linearized plane Couette flow problem and it is found that the proposed modification yields results that are identical with some highly accurate variational results.


2016 ◽  
Vol 56 (5) ◽  
pp. 854-863 ◽  
Author(s):  
V. V. Aristov ◽  
S. A. Zabelok ◽  
M. A. Fedosov ◽  
A. A. Frolova

2008 ◽  
Vol 33-37 ◽  
pp. 1377-1382 ◽  
Author(s):  
Halida Musha ◽  
Mamtimin Gheni ◽  
Buhalqam

In this paper, the iBone (Imitation Bone) model which is coupled with Turing reaction-diffusion system and FEM, is used. The numerical simulation of bone forming process by considering the osteoclasts and osteoblasts process are conducted. The bone mass is increased with increase of the initial load value, then fibula and femur bones are obtained respectively by keeping the required bone forming value. The new S shape wave of metal welded bellow of mechanical seal are designed based on the the optimization results through this method. The S shape and V shape both were analyzed with FEM method. The same boundary conditions were given for two types of wave. The results are shown that the stresses mainly concentrated on the welded area. It is interesting that the value of the stresses of the two types of wave basically same. However, compressibility of the two types of wave is very different at the same computation stage. The compressibility of S shape wave was higher than V shape.


2013 ◽  
Vol 59 (4) ◽  
pp. 483-497 ◽  
Author(s):  
D. Prakash ◽  
P. Ravikumar

Abstract In this paper, transient analysis on heat transfer across the residential building roof having various materials like wood wool, phase change material and weathering tile is performed by numerical simulation technique. 2-dimensional roof model is created, checked for grid independency and validated with the experimental results. Three different roof structures are included in this study namely roof with (i). Concrete and weathering tile, (ii). Concrete, phase change material and weathering tile and (iii). Concrete, phase change material, wood wool and weathering tile. Roof type 3 restricts 13% of heat entering the room in comparison with roof having only concrete and weathering tile. Also the effect of various roof layers’ thickness in the roof type 3 is investigated and identified that the wood wool plays the major role in arresting the entry of heat in to the room. The average reduction of heat is about 10 % for an increase of a unit thickness of wood wool layer.


1991 ◽  
Vol 29 (5) ◽  
pp. 561-573 ◽  
Author(s):  
A.C. Hansen ◽  
R.L. Crane ◽  
M.H. Damson ◽  
R.P. Donovan ◽  
D.T. Horning ◽  
...  

On 24 May 1820 a manuscript entitled ‘A Mathematical Inquiry into the Causes, Laws and Principal Phenomena of Heat, Gases, Gravitation, etc.’ was submitted to Davies Gilbert for publication in the Philosophical Transactions of the Royal Society . The author was John Herapath (1790-1868), and his article included a comprehensive (if somewhat faulty) exposition of the kinetic theory of gases. Sir Humphry Davy, who assumed the Presidency of the Royal Society on 30 November 1820, became primarily responsible for the fate of the article and wrote several letters to Herapath concerning it. After it became clear that there was considerable opposition to its publication by the Royal Society, Herapath withdrew the article and sent it instead to the Annals of Philosophy , where it appeared in 1821 (1). Herapath’s theory received little notice from scientists until thirty-five years later, when the kinetic theory was revived by Joule, Krönig, Clausius, and Maxwell. The incident is significant in the history of physical science because it illustrates an important distinction between the two doctrines concerning the nature of heat—the kinetic and the vibration theories—a distinction which is often forgotten because of the apparent similarity of both doctrines as contrasted with the caloric theory. It also throws some light on the character of early nineteenth century British science, both in and out of the Royal Society.


Sign in / Sign up

Export Citation Format

Share Document