OS12(1)-3(OS12W0431) A Life-Assessment Method for a Low-Pressure Steam-Turbine Rotor

Author(s):  
Shigeo Sakurai ◽  
Kunio Asai ◽  
Eiji Saito ◽  
Kiyoshi Namura ◽  
Kenichiro Nomura
Author(s):  
Liang Yan ◽  
Kazuyoshi Nakajima ◽  
Shuichi Inagaki ◽  
Masao Arimura ◽  
Shigeo Hosoi

Corrosion cracks were found at the bottom of the first hook of the L-4 stage of a low-pressure steam turbine rotor after about 230,000 hours operation with about 300 times of starts and stops of a thermal power plant. They developed in the circumferential direction, showing a groove line on the bottom surface of the first hook. Cross sectional observation showed that they had branched and blunted shapes, and X-ray cartography analysis results showed that they filled with corrosion products, and sulfur concentration was detected. In order to verify that they were caused by stress corrosion cracking (SCC), bent-beam stress-corrosion tests with four-point loaded specimens (ASTM G40 method) were performed in a 0.25wt%H2SO4+NH4OH solution with a pH controlled at 9.8 to simulate the corrosion environment of the steam turbine, and the test temperature was set at 80°C. After 6,000-hour and 10,000-hour tests, the cross sections of SCC specimens were inspected with a scanning electron microscope (SEM). Branched and blunted cracks were observed and the crack shapes were similar to those of the corrosion cracks occurred in the steam turbine. Sulfur concentration was also observed in the blunted cracks of the specimens by X-ray cartography analysis. Based on the test results, it can be assumed that the corrosion cracks developed from stress corrosion cracking (SCC) in the low-pressure steam turbine. It is thus necessary to periodically inspect not only the L-1, 2 stages of the wet and corrosion zone, but also the L-3, 4 stages of dry and salt zone in low-pressure steam turbines.


2006 ◽  
Vol 326-328 ◽  
pp. 601-604 ◽  
Author(s):  
Woo Sung Choi ◽  
Eric Fleury ◽  
Gee Wook Song ◽  
Jung Seob Hyun

An important characteristic of a steam power plant is its ability to maintain reliability and safety of the plant against frequent start-ups and load changes. Transient regimes arising during start-ups, shut-downs and load changes give rise to unsteady temperature distribution with time in steam turbine rotor(HP/IP), which results in non-uniform strain and stress distribution. The rapid increase of temperature and rotational speed during starts-ups, especially, makes conditions more severe and causes main components’ damage and reduction of life span for steam turbine. Thus accurate knowledge of thermal and centrifugal stresses are required for the integrity and lifetime assessment for the turbine rotor. So far, only elastic calculations are currently performed for simplicity. However, it is well known that the materials of steam turbine rotor deform inelastically at high temperature. Existing models proposed to describe the viscoplastic(rate-dependent) behavior are rather elaborate and difficult to incorporate with computer simulations in the case of complex structures. In this paper, the life assessment for steam turbine rotor was established by combining the inelastic behavior and the finite element method. The inelastic analysis was particularly focused on viscoplastic behavior that is simple enough to be used effectively in computer simulation and matches the essential features of the time-dependent inelastic behavior of materials reasonably well for cyclic loading under non-isothermal conditions. Using this study, life consumption of steam turbine rotor can be obtained.


Sign in / Sign up

Export Citation Format

Share Document