A damage-mechanics coupling analysis based life assessment method on common material of large steam turbine rotor

Author(s):  
Kun Wang ◽  
Shuhong Huang
2005 ◽  
Vol 128 (1) ◽  
pp. 173-177 ◽  
Author(s):  
Jing JianPing ◽  
Meng Guang ◽  
Sun Yi ◽  
Xia SongBo

A nonlinear continuum damage mechanics model is proposed to assess the high temperature creep life of a steam turbine rotor, in which the effect of mean stress is taken into account and the damage is accumulated nonlinearly. The model is applied to a 300 MW steam turbine under hot start operation. The results are compared with those from the linear accumulation theory that is dominant in the creep life assessment of steam turbine rotors at present. The comparison results show that the nonlinear continuum damage mechanics model describes the accumulation and development of damage better than the linear accumulation theory.


2006 ◽  
Vol 326-328 ◽  
pp. 601-604 ◽  
Author(s):  
Woo Sung Choi ◽  
Eric Fleury ◽  
Gee Wook Song ◽  
Jung Seob Hyun

An important characteristic of a steam power plant is its ability to maintain reliability and safety of the plant against frequent start-ups and load changes. Transient regimes arising during start-ups, shut-downs and load changes give rise to unsteady temperature distribution with time in steam turbine rotor(HP/IP), which results in non-uniform strain and stress distribution. The rapid increase of temperature and rotational speed during starts-ups, especially, makes conditions more severe and causes main components’ damage and reduction of life span for steam turbine. Thus accurate knowledge of thermal and centrifugal stresses are required for the integrity and lifetime assessment for the turbine rotor. So far, only elastic calculations are currently performed for simplicity. However, it is well known that the materials of steam turbine rotor deform inelastically at high temperature. Existing models proposed to describe the viscoplastic(rate-dependent) behavior are rather elaborate and difficult to incorporate with computer simulations in the case of complex structures. In this paper, the life assessment for steam turbine rotor was established by combining the inelastic behavior and the finite element method. The inelastic analysis was particularly focused on viscoplastic behavior that is simple enough to be used effectively in computer simulation and matches the essential features of the time-dependent inelastic behavior of materials reasonably well for cyclic loading under non-isothermal conditions. Using this study, life consumption of steam turbine rotor can be obtained.


Author(s):  
Yong-Jian Sun ◽  
Li-Sheng Hu

A new nonlinear model is proposed to assess the low cycle fatigue life of a 300 MW steam turbine rotor. Manson-Coffin equation and cyclic stress-strain relationship are employed to eliminate the unmeasured parameters, so all the parameters in model are measurable. Through comparison with that from the linear accumulation theory and continuum damage mechanics theory the results show this new nonlinear model describes the damage accumulation well and precisely in accordance with the practical test data. This approach supplies a new way to assess the damage of steam turbine rotor with satisfactory precision in engineering.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Vital Kumar Yadav Pillala ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram ◽  
M. Mahendran ◽  
Debasish Biswas ◽  
...  

AbstractThe paper presents details of a unique experimental facility along with necessary accessories and instrumentation for testing steam turbine cascade blades in wet and nucleating steam. A steam turbine rotor tip cascade is chosen for flow investigations. Cascade inlet flow measurements show uniform conditions with dry air and steam and dry air mixture of different ratios. Exit flow surveys indicate that excellent flow periodicity is obtained. Blade surface static pressure and exit total pressure distributions are also presented with dry air and with steam and dry air mixture of different ratios as the working medium at an exit Mach number of 0.52.


2019 ◽  
Vol 76 ◽  
pp. 263-278 ◽  
Author(s):  
Xuanchen Zhu ◽  
Haofeng Chen ◽  
Fuzhen Xuan ◽  
Xiaohui Chen

Sign in / Sign up

Export Citation Format

Share Document