OS8-7 Effect of Zr Shot Peening on Fatigue Crack Growth and Crack Opening in SUS316 SENB Specimens(Shot peening,OS8 Fatigue and fracture mechanics,STRENGTH OF MATERIALS)

Author(s):  
Satoru Izawa
Author(s):  
Kazuki Takashima ◽  
Timothy P. Halford ◽  
Yakichi Higo

We have developed a new type of mechanical testing machine for micro-sized specimens, which can apply a small static or cyclic load, and have investigated fracture and fatigue crack growth behavior of micro-sized specimens. Cantilever beam type specimens (10 μm × 10 μm × 50 μm), with notches were prepared from thin films of a Ni-P amorphous alloy by focused ion beam machining. Fatigue and fracture toughness tests were carried out in air at room temperature using the mechanical testing machine. Fatigue and fracture testing was completed successfully for micro-sized cantilever specimens. Once fatigue crack growth occurs, rapid sample failure was observed in these micro-sized specimens. This indicates that the fatigue life of micro-sized specimens is mainly dominated by crack initiation. This also suggests that even a micro-sized surface flaw can be a fatigue crack initiation site which will shorten the fatigue life of micro-sized specimens. As a result of fracture toughness tests, plane strain criteria for small scale yielding were not achieved for this amorphous alloy. Plane stress and plane strain dominated regions were clearly observed on the fracture surfaces and their sizes were consistent with those estimated by fracture mechanics calculations. This suggests that fracture mechanics is still valid for such micro-sized specimens.


Author(s):  
Steven J. Polasik ◽  
Carl E. Jaske

Pipeline operators must rely on fatigue crack growth models to evaluate the effects of operating pressure acting on flaws within the longitudinal seam to set re-assessment intervals. In most cases, many of the critical parameters in these models are unknown and must be assumed. As such, estimated remaining lives can be overly conservative, potentially leading to unrealistic and short reassessment intervals. This paper describes the fatigue crack growth methodology utilized by Det Norske Veritas (USA), Inc. (DNV), which is based on established fracture mechanics principles. DNV uses the fracture mechanics model in CorLAS™ to calculate stress intensity factors using the elastic portion of the J-integral for either an elliptically or rectangularly shaped surface crack profile. Various correction factors are used to account for key variables, such as strain hardening rate and bulging. The validity of the stress intensity factor calculations utilized and the effect of modifying some key parameters are discussed and demonstrated against available data from the published literature.


2021 ◽  
Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract The effect of a single overload on the fatigue crack growth rate was investigated for Type 316 stainless steel. Fatigue crack growth tests were conducted by controlling strain and load. Tensile and compressive overloads were applied during constant amplitude cycling. The overload ratio, which was defined as the ratio of overload size to baseline constant amplitude, was also changed. The constant amplitude tests were conducted at the strain or the stress ratio of −1.0 which was defined as the ratio of the minimum value to the maximum value. The crack opening point was obtained by the unloading elastic compliance method. The crack growth rate increased after the single compressive overload. The accelerating rate increased with the overload ratio. In contrast, not only the acceleration but also the retardation of the crack growth rate was observed for some tensile overload cases. The crack growth rate increased for relatively small tensile overload cases and decreased for relatively large tensile overload cases. The change in the crack opening level was examined. The crack growth rates after tensile and compressive single overloads correlated with the effective strain and stress intensity factor ranges both for load and strain controlling modes.


Author(s):  
Daowu Zhou ◽  
T. Sriskandarajah ◽  
Heidi Bowlby ◽  
Ove Skorpen

The deformation mechanism in reel-lay of corrosive resistance alloy (CRA) clad/lined pipes can facilitate defect tearing and low cycle fatigue crack growth in the girth welds. Pipe-lay after straightening will subject the CRA welds to high cycle fatigue. The permissible seastate for installation will be governed by failure limit states such as local collapse, wrinkling of the liner, fatigue and fracture. By means of a recently completed offshore project in North Sea, this paper discusses seastate optimisation when installing pipelines with CRA girth welds, from a fatigue and fracture perspective. The additional limiting requirement in CRA welds to maintain CRA liner integrity can lead to significant assessment work since all critical welds shall be examined. AUT scanned defect data were utilised to maximise permissible seastates based on fatigue allowance from a fatigue crack growth calculation. An alternative simplified approach to derive the crack growth based on a superposition method is studied. It enables a straightforward real-time prediction of crack growth and has the potential to be used during the offshore campaign to improve the installation flexibility. Post-installation fracture assessment under more critical seastates is examined for CRA partial over-matching welds. A comparison of CDF between conventional ECA procedure and 3D FE is provided.


Sign in / Sign up

Export Citation Format

Share Document