Volume 5: Pipelines, Risers, and Subsea Systems
Latest Publications


TOTAL DOCUMENTS

83
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851241

Author(s):  
Bowen Ma ◽  
Narakorn Srinil

Deep-water flexible risers conveying hydrocarbon oil and gas flows may be subject to internal dynamic fluctuations associated with the spatial variations of phase densities, velocities and pressure drops. Many studies have focused on single-phase flows in pipes whereas understanding of multiphase flow effects is lacking. This study aims to investigate the planar free-vibration characteristics of a long flexible catenary riser carrying the steady-state, multiphase slug oil-gas flows in order to understand how the inclination-dependent internal slug flows affect riser natural frequencies and modal shapes. The influence of slug characteristics such as phase velocities on the riser vibration is also studied. The catenary riser planar motions are mathematically described by a two-dimensional continuum model capturing coupled horizontal and vertical responses. Based on the selected two-phase flow rates at the wellhead, riser geometric configurations and specified slug unit lengths, a steady-state slug flow model is considered by taking into account several empirical closure correlations and riser mechanical properties, solving for the multiphase flow aspects including pressure, velocities, liquid holdup and gas fraction. By assigning an undamped free-vibration shape of an empty catenary riser as initial displacement conditions, the space-time numerical simulations are performed using a finite difference approach. Comparisons of oscillation frequencies, time histories, phase planes, time-space varying responses and dynamic stresses of catenary risers with and without slug flows are presented, identifying the dynamic modifications arising from the internal slug-induced mass momentum change and pressure loss. To understand the influence of slug flow properties, parametric studies are carried out with different gas velocities. Numerical results highlight the reduced riser tensions, decreased oscillation frequencies, multiple oscillation modes, amplified amplitudes and stresses. These key observations will be useful for the forced vibration analysis of catenary risers subject to combined internal (multiphase) and external (vortex-shedding) flow excitations.


Author(s):  
Guowei Sun ◽  
Peihua Han ◽  
Yuxin Xu ◽  
Yong Bai ◽  
Hamad Hameed

Metallic strips flexible pipe (MSFP) is widely regarded as an alternative for submarine pipelines. This paper presents a methodology for calculating the fatigue life of MSFP. Firstly, given a specific working condition of MSFP, the dynamic responses of MSFP are calculated through OrcaFlex. The obtained results from the global analysis are then implemented into a finite element model in ABAQUS to determine the stress-history curves of each steel strips layer. The estimated fatigue life is calculated by rainflow counting algorithms, S-N curve and Miner’s rule which are coded in MATLAB. Additional study about average stress correction is carried out, which might be useful for its marine engineering applications.


Author(s):  
Terry Griffiths ◽  
Scott Draper ◽  
David White ◽  
Liang Cheng ◽  
Hongwei An ◽  
...  

The on-bottom stability design of subsea pipelines is important to ensure safety and reliability but is challenging to achieve, particularly in Australia due to onerous metocean and seabed conditions, and the prevalence of light gas pipelines. This challenge has been amplified by the fact that industry design guidelines have given no guidance on how to incorporate the potential benefits of seabed mobility, which can lead to lowering and self-burial of the pipeline on a sandy seabed. In this paper, we review the learnings of the STABLEpipe Joint Industry Project (JIP), which was initiated with the aim of developing new design guidelines to assess the on-bottom stability of pipelines on mobile seabeds. The paper summarises the new research undertaken within the STABLEpipe JIP to better predict sedimentation and scour, pipe-fluid interaction and pipe-soil interaction. New design methods to assess the on-bottom stability are also outlined, which have been developed based on the new research. These methods have been adopted in a DNVGL guideline authored by the JIP researchers in collaboration with DNVGL and presently available for use by the JIP participants. Finally, applications of the STABLEpipe JIP outcomes and focus areas for further work are discussed.


Author(s):  
Terry Griffiths ◽  
Scott Draper ◽  
Liang Cheng ◽  
Feifei Tong ◽  
Antonino Fogliani ◽  
...  

As offshore renewable energy projects progress from concept demonstration to commercial-scale developments there is a need for improved approaches beyond conventional cable engineering design methods that have evolved from larger diameter pipelines for the oil and gas industry. New approaches are needed to capture the relevant physics for small diameter cables on rocky seabeds to reduce the costs and risks of power transmission and increase operational reliability. This paper reports on subsea cables that MeyGen installed for Phase 1a of the Pentland Firth Inner Sound tidal stream energy project. These cables are located on rocky seabeds in an area where severe metocean conditions occur. ROV field observation of these cables shows them to be stable on the seabed with little or no movement occurring over almost all of the cable routes, despite conventional engineering methods predicting significant dynamic movement. We cite recent research undertaken by the University of Western Australia (UWA) to more accurately assess the hydrodynamic forces and geotechnical interaction of cables on rocky seabeds. We quantify the conformity between the cables and the undulating rocky seabed, and the distributions of cable-seabed contact and spanning via simulations of the centimetric-scale seabed bathymetry. This analysis leads to calculated profiles of lift, drag and seabed friction along the cable, which show that all of these load and reaction components are modelled in an over-conservative way by conventional pipeline engineering techniques. Overall, our analysis highlights that current cable stability design can be unnecessarily conservative on rocky seabeds. Our work foreshadows a new design approach that offers more efficient cable design to reduce project capex and enhance through-life integrity management.


Author(s):  
Mario A. Polanco-Loria ◽  
Håvar Ilstad

This work presents a numerical-experimental methodology to study the fatigue behavior of dented pipes under internal pressure. A full-scale experimental program on dented pipes containing gouges were achieved. Two types of defects were studied: metal loss (plain dent) and sharp notch. Both defects acting independently reduce the fatigue life performance but their combination is highly detrimental and must be avoided. We did not find a severity threshold (e.g. dent depth or crack depth) where these defects could coexist. In addition, based on numerical analyses we proposed a new expression for stress concentration factor (SCF) in line with transversal indentation. This information was successfully integrated into a simple fatigue model where the fatigue life predictions were practically inside the window of experimental results.


Author(s):  
Soheil Manouchehri

For un-bonded (sliding) Pipe-In-Pipe (PIP) systems, one of the main components is the centralizers (also called spacers). The main functions of the centralizers are to centralize the inner pipe inside the outer pipe, to transfer the loads between inner pipe and outer pipe and to safeguard the insulation material in the annulus from excessive compression during fabrication, installation and operation. Centralizers must also have good thermal insulation properties so that the heat loss is minimized. Different designs are now available for centralizers but the majority are based on two half shells which are bolted together. During fabrication, installation and operation, centralizers subject to different loads under which they are required to continue functioning properly. This paper provides an overview of centralizer design aspects and then focuses on the loading history during installation using reeling method. The main contributing parameters to centralizer loading during reeled installation technique are discussed and conclusions are drawn. It is believed that this will enable Pipeline Engineers to select the most appropriate material and design for centralizers.


Author(s):  
Andrew E. Potts ◽  
Douglas A. Potts ◽  
Hayden Marcollo ◽  
Kanishka Jayasinghe

The prediction of Vortex-Induced Vibration (VIV) of cylinders under fluid flow conditions depends upon the eddy shedding frequency, conventionally described by the Strouhal Number. The most commonly cited relationship between Strouhal Number and Reynolds Number for circular cylinders was developed by Lienhard [1], whereby the Strouhal Number exhibits a consistent narrow band of about 0.2 (conventional across the sub-critical Re range), with a pronounced hump peaking at about 0.5 within the critical flow regime. The source data underlying this relationship is re-examined, wherein it was found to be predominantly associated with eddy shedding frequency about fixed or stationary cylinders. The pronounced hump appears to be an artefact of the measurement techniques employed by various investigators to detect eddy-shedding frequency in the wake of the cylinder. A variety of contemporary test data for elastically mounted cylinders, with freedom to oscillate under one degree of freedom (i.e. cross flow) and two degrees of freedom (i.e. cross flow and in-line) were evaluated and compared against the conventional Strouhal Number relationship. It is well established for VIV that the eddy shedding frequency will synchronise with the near resonant motions of a dynamically oscillating cylinder, such that the resultant bandwidth of lock-in exhibits a wider range of effective Strouhal Numbers than that reflected in the narrow-banded relationship about a mean of 0.2. However, whilst cylinders oscillating under one degree of freedom exhibit a mean Strouhal Number of 0.2 consistent with fixed/stationary cylinders, cylinders with two degrees of freedom exhibit a much lower mean Strouhal Number of around 0.14–0.15. Data supports the relationship that Strouhal Number does slightly diminish with increasing Reynolds Number. For oscillating cylinders, the bandwidth about the mean Strouhal Number value appears to remain largely consistent. For many practical structures in the marine environment subject to VIV excitation, such as long span, slender risers, mooring lines, pipeline spans, towed array sonar strings, and alike, the long flexible cylinders will respond in two degrees of freedom, where the identified difference in Strouhal Number is a significant aspect to be accounted for in the modelling of its dynamic behaviour.


Author(s):  
Xiao Li ◽  
Xiaoli Jiang ◽  
Hans Hopman

Flexible risers are one kind of flexible pipes that transport fluid between subsea facilities and topside structures. This pipe-like structure consists of multiple layers and its innermost carcass layer is designed for external hydrostatic pressure resistance. For the flexible risers used in ultra-deep water fields, the critical collapse pressure of the carcass layers is one of the dominant factors in their safety design. However, the complexity of the interlocked carcass design introduces significant difficulties and constraints into the engineering analysis. To facilitate the anti-collapse analysis, equivalent layer methods are demanded to help construct an equivalent pipe that performs a similar collapse behavior of the carcass. This paper proposes a strain energy based equivalent layer method which trying to bridge the equivalence between those two structures by considering equivalent geometric and material properties for the equivalent layer. Those properties are determined through strain energy equivalence and membrane stiffness equivalence. The strain energy of the carcass is obtained through numerical models and is then used in a derived equation set to calculate the equivalent properties for the equivalent layer. After all the equivalent properties have been determined, an equivalent layer FE model is built and used to predict the critical pressure of the carcass. The prediction result is compared to that of the full 3D carcass model as well as the equivalent models that built based on other existing equivalent methods, which shows that the proposed equivalent layer method gives a better performance on predicting the critical pressure of the carcass.


Author(s):  
Graeme Roberts ◽  
T. Sriskandarajah ◽  
Gianluca Colonnelli ◽  
Arnaud Roux ◽  
Alan Roy ◽  
...  

A method of carrying out a combined axial walking and lateral buckling assessment for a flexible flowline has been developed using finite element analysis. The method overcomes limitations of screening assessments which could be inconclusive when applied either to a flexible flowline on an undulating seabed with transverse gradients or to one that buckles during hydrotest. Flexible flowlines that were to be surface-laid on a seabed with longitudinal undulations and transverse gradients were assessed using the method. The flexible flowlines were simulated in their as-laid state, and the simulation incorporated hydrotest pressure and the pressure & temperature gradients and transients associated with multiple start-ups. The objective was to quantify the axial walking and lateral slip tendency of the flexible flowlines and the impact that walking might have on the connected end structures. The lateral buckle locations predicted by finite element analysis were compared to a post-hydrotest survey and the radius of curvature from analysis was compared to the minimum bend radius of the flexible.


Author(s):  
Shan Jin ◽  
Shuai Yuan ◽  
Yong Bai

In practical application, pipelines will inevitably experience bending and compression during manufacture, transportation and offshore installation. The mechanical behavior of tubes under combined axial compression and bending loads is investigated using experiments and finite element method in this paper. Tubes with D/t ratios in the range of 40 and 97 are adopted in the experiments. Then, the ultimate loads and the local buckling modes of tubes are studied. The commercial software ABAQUS is used to build FE models to simulate the load-shortening responses of tubes under combined loads. The results acquired from the ABAQUS simulation are compared with the ones from verification bending experiment, which are in good agreement with each other. The models in this paper are feasible to analyze the mechanical properties of tubes under combined axial compression and bending loads. The related results may be of interest to the manufacture engineers.


Sign in / Sign up

Export Citation Format

Share Document