scholarly journals New Device for Piston-Ring Assembly Friction Force Measurement in IDI Diesel Engine.

1993 ◽  
Vol 36 (4) ◽  
pp. 723-729 ◽  
Author(s):  
Jeong Eui Yun ◽  
Sung Soo Kim
Author(s):  
Myoungjin Kim ◽  
Thomas M. Kiehne ◽  
Ronald D. Matthews

Even though many researchers have measured the piston/ring assembly friction force over the last several decades, accurate measurement of the piston/ring assembly friction force is a still challenging problem. The floating liner method is not widely used, in spite of its accuracy, due to the substantial modifications required to the engine. On the other extreme, bench tests of the piston/ring assembly cannot completely simulate the real firing condition although bench tests are rapid, consistent, and cost effective. In this study, friction forces of the piston/ring assembly were measured using the instantaneous IMEP method and compared with modeling results using Ricardo’s RINGPAK software. In this research, a flexible flat cable was used to connect the connecting rod strain gage signal to the analysis system instead of using a grasshopper linkage. Therefore, the piston/ring assembly friction force was measured with the minimum change to the engine hardware.


1985 ◽  
Author(s):  
Takaharu Goto ◽  
Shun-ichi Aoyama ◽  
Shin-ichi Nagumo ◽  
Yasuo Nakajima ◽  
Michio Onoda

Author(s):  
Kishore Mistry ◽  
D. V. Bhatt ◽  
N. R. Sheth

Frictional losses in an IC engine are observed between 17–19% of total induced horsepower. 35–45% frictional losses observed due to piston ring assembly only from the above-referred total frictional loss. Lubrication system is for reducing the frictional losses and under the total hydrodynamic lubrication system, if made it feasible, above referred losses can be reduced considerably. Wear normally observed at TDC and BDC during the power stroke. Experimental set-up is prepared by using used piston-cylinder assembly of an engine. Experiment methodology is adopted based on certain assumption and simulated the entire system with an extra drive system by an electric motor with a provision of various speed availability. Various pockets on cylinder liner of 2mm diameter are located on the periphery of cylinder liner to offer lubrication to the system. Care was taken to control the rate of lubrication flow with the help of control knob. Seven different profiles on piston ring were generated and measured. Friction force is calculated by power consumption measurement under different dynamic condition with a variation of 5-speed, 3- lubricants and different 8- types of piston ring geometry are experimented under different combination and results are tabulated. Graphs are plotted for friction force v/s speed for different lubricants and piston ring profiles. Effect of lubricants (SAE30, 15W40& 2T) and ring geometry are compared.


2012 ◽  
Vol 424-425 ◽  
pp. 132-136
Author(s):  
Guo Jin Chen ◽  
Zhang Ming Peng ◽  
Jian Guo Yang ◽  
Qiao Ying Huang

On the diesel engine’s test bed, this paper has studied the parameters regarding the diesel engine’s rotational speed, the piston ring’s width and wearing capacity and so on, and their relation with the output signal of the magnetoresistive sensor under the reverse drawing of the diesel engine. The research discovered that the piston ring’s wear and the magnetoresistive sensor’s output have the corresponding relationship. And on the oil tanker with the 6RTA52U diesel engine, the influence of the diesel engine’s operating parameters and the load situations to the magnetoresistive sensor’s output is surveyed under four kinds of different operating modes. The test result and the research conclusion provide the technical foundation for the online Wear monitoring of the large-scale marine diesel engine’s piston ring.


1998 ◽  
Vol 41 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Zheng Ma ◽  
Naeim A. Henein ◽  
Walter Bryzik ◽  
John Glidewell
Keyword(s):  

Author(s):  
Yibin Guo ◽  
Wanyou Li ◽  
Dequan Zou ◽  
Xiqun Lu ◽  
Tao He

In this paper a mixed lubrication model considering lubricant supply conditions on cylinder bore has been developed for the piston ring lubrication. The numerical procedures of both fully flooded and starved lubrication were included in the model. The lubrication equations and boundary conditions at the end of strokes were discussed in detail. The effects of piston ring design parameters, such as ring face profile and ring tension, on oil film thickness, friction force and power loss under fully flooded and starved lubrication conditions due to available lubricant supply on cylinder bore were studied. The simulation results show that the oil available in the inlet region of the oil film is important to the piston ring friction power loss. With different ring face crown heights and tensions, the changes of oil film thickness and friction force were apparent under fully flooded lubrication, but almost no changes were found under starved lubrication except at the end of a stroke. In addition, the oil film thickness and friction force were affected evidently by the ring face profile offsets under both fully flooded and starved lubrication conditions, and the offset towards the combustion chamber made a large contribution to forming thicker oil film during the expansion stroke. So under different lubricant supply conditions on the cylinder bore, the ring profile and tension need to be adjusted to reduce the friction and power loss. Moreover, the effects of lubricant viscosity, surface composite roughness, and engine operating speed on friction force and power loss were also discussed.


2002 ◽  
Vol 26 (8) ◽  
pp. 1608-1614
Author(s):  
Gyeong-Pyo Ha ◽  
Jung-Su Kim ◽  
Myeong-Rae Jo ◽  
Dae-Yun O

Sign in / Sign up

Export Citation Format

Share Document