scholarly journals Numerical Simulation of Supersonic Flow CO Chemical Laser Solving Navier-Stokes Equations.

1994 ◽  
Vol 37 (2) ◽  
pp. 282-287 ◽  
Author(s):  
Wataru Masuda ◽  
Hirokazu Yamada
2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


2019 ◽  
Vol 878 ◽  
pp. 5-36 ◽  
Author(s):  
Yuji Hattori ◽  
Francisco J. Blanco-Rodríguez ◽  
Stéphane Le Dizès

The linear instability of a vortex ring with swirl with Gaussian distributions of azimuthal vorticity and velocity in its core is studied by direct numerical simulation. The numerical study is carried out in two steps: first, an axisymmetric simulation of the Navier–Stokes equations is performed to obtain the quasi-steady state that forms a base flow; then, the equations are linearized around this base flow and integrated for a sufficiently long time to obtain the characteristics of the most unstable mode. It is shown that the vortex rings are subjected to curvature instability as predicted analytically by Blanco-Rodríguez & Le Dizès (J. Fluid Mech., vol. 814, 2017, pp. 397–415). Both the structure and the growth rate of the unstable modes obtained numerically are in good agreement with the analytical results. However, a small overestimation (e.g. 22 % for a curvature instability mode) by the theory of the numerical growth rate is found for some instability modes. This is most likely due to evaluation of the critical layer damping which is performed for the waves on axisymmetric line vortices in the analysis. The actual position of the critical layer is affected by deformation of the core due to the curvature effect; as a result, the damping rate changes since it is sensitive to the position of the critical layer. Competition between the curvature and elliptic instabilities is also investigated. Without swirl, only the elliptic instability is observed in agreement with previous numerical and experimental results. In the presence of swirl, sharp bands of both curvature and elliptic instabilities are obtained for $\unicode[STIX]{x1D700}=a/R=0.1$, where $a$ is the vortex core radius and $R$ the ring radius, while the elliptic instability dominates for $\unicode[STIX]{x1D700}=0.18$. New types of instability mode are also obtained: a special curvature mode composed of three waves is observed and spiral modes that do not seem to be related to any wave resonance. The curvature instability is also confirmed by direct numerical simulation of the full Navier–Stokes equations. Weakly nonlinear saturation and subsequent decay of the curvature instability are also observed.


1995 ◽  
Vol 1 (3-4) ◽  
pp. 225-235 ◽  
Author(s):  
M. J. Braun ◽  
M. Dzodzo

The flow in a hydrostatic pocket is numerically simulated using a dimensionless formulation of the 2-D Navier-Stokes equations written in primitive variables, for a body fitted coordinates system, and applied through a collocated grid. In essence, we continue the work of Braun et al. 1993a, 1993b] and extend it to the study of the effects of the pocket geometric format on the flow pattern and pressure distribution. The model includes the coupling between the pocket flow and a finite length feedline flow, on one hand, and the pocket and its adjacent lands on the other hand. In this context we shall present, on a comparative basis, the flow and the pressure patterns at the runner surface for square, ramped-Rayleigh step, and arc of circle pockets. Geometrically all pockets have the same footprint, same lands length, and same capillary feedline. The numerical simulation uses the Reynolds number based on the lid(runner) velocity and the inlet jet strengthFas the dynamic similarity parameters. The study aims at establishing criteria for the optimization of the pocket geometry in the larger context of the performance of a hydrostatic bearing.


Sign in / Sign up

Export Citation Format

Share Document