Consideration on Evaluation of Layered Material for Identification of Mechanical Characteristics in Horny layer by Indentation Test

Author(s):  
Sayumi KANEKO ◽  
Atsushi SAKUMA ◽  
Jungumi SEO
Author(s):  
Sayumi Kaneko ◽  
Jungmi Seo ◽  
Atsushi Sakuma

Many industries, such as the biotechnology, food, and beauty industries, require noninvasive methods for quantifying material stiffness. One such method is the indentation test, which is particularly useful in evaluating the mechanical characteristics of soft materials. However, it is difficult to identify mechanical characteristics of the distinct layers of layered materials such as human skin due to their physical integration with one another. There is particular interest in evaluating the softness of the stratum corneum (the outermost layer of skin) in the cosmetics industry, where the effect of cosmetics should be restricted to this outermost layer. The purpose of this study was to develop a method to determine the elasticities and thicknesses of discrete layers in a layered material by using an indentation test. This paper discusses the results of this indentation test derived via the finite element method (FEM). Here, the finite element (FE) model is constructed by a layered structure of flat surfaces with given Young’s moduli. The FEM results suggest the existence of a law among the elasticities and layer thicknesses of a layered material.


2012 ◽  
Vol 560-561 ◽  
pp. 338-343 ◽  
Author(s):  
Nikolay A. Voronin

The mechanics of contact interaction of rigid spherical indenter with two-layer elastic - plastic half-space, simulating a surface of a solid body with a thin surface layer is considered. Analytical dependences of critical indentation and bearing capacity on mechanical characteristics of materials of a base and a coating, and as well as that for thickness of top layer (coating) in all region of possible thickness are received and analyzed. Existence of regions of the abnormal structural strength allowing the surface layered material to identify unequivocally as a topocomposite is shown. Theoretical dependences were verified by a final elements method.


2007 ◽  
Vol 544-545 ◽  
pp. 821-824
Author(s):  
Indra ◽  
S.W. Oh ◽  
Hee Joon Kim

This work examined the mechanical properties of alumina that can directly be enhanced by ratio of nano sized alumina powders additives to micro size alumina powders (n/m ratio). These new materials have mechanical properties that are strongly grain size dependent and often significantly different from those of their coarser grained counter parts. The mechanical characteristics of samples were observed by using the indentation test system. This data shows that the relative density for the sample is increased with increasing Meyer hardness.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Marie-Angèle Abellan ◽  
Hassan Zahouani ◽  
Jean-Michel Bergheau

This paper proposes a triphasic model of intact skin in vivo based on a general phenomenological thermohydromechanical and physicochemical (THMPC) approach of heterogeneous media. The skin is seen here as a deforming stratified medium composed of four layers and made out of different fluid-saturated materials which contain also an ionic component. All the layers are treated as linear, isotropic materials described by their own behaviour law. The numerical simulations of in vivo indentation test performed on human skin are given. The numerical results correlate reasonably well with the typical observations of indented human skin. The discussion shows the versatility of this approach to obtain a better understanding on the mechanical behaviour of human skin layers separately.


2014 ◽  
Vol 657 ◽  
pp. 432-436
Author(s):  
Bogdan Nicolae Ghitan ◽  
Nicolae Florin Cofaru

The aim of the research of the experiment was to determine the mechanical characteristics of the composite layered material. There has been two types of experimental tests i.e. test for determining the tensile modulus of elasticity of the material, the maximum voltage and the elongation at break of the material. The second type of test is the flexural test was intended to determine the maximum load that the breaking is produced by bending.


Author(s):  
S. Trachtenberg ◽  
P.M. Steinert ◽  
B.L. Trus ◽  
A.C. Steven

During terminal differentiation of vertebrate epidermis, certain specific keratin intermediate filament (KIF) proteins are produced. Keratinization of the epidermis involves cell death and disruption of the cytoplasm, leaving a network of KIF embedded in an amorphous matrix which forms the outer horny layer known as the stratum corneum. Eventually these cells are shed (desquamation). Normally, the processes of differentiation, keratinization, and desquamation are regulated in an orderly manner. In psoriasis, a chronic skin disease, a hyperkeratotic stratum corneum is produced, resulting in abnormal desquamation of unusually large scales. In this disease, the normal KIF proteins are diminished in amount or absent, and other proteins more typical of proliferative epidermal cells are present. There is also evidence of proteolytic degradation of the KIF.


2001 ◽  
Vol 120 (5) ◽  
pp. A112-A112 ◽  
Author(s):  
J CURRY ◽  
G SHI ◽  
J PANDOLFINO ◽  
R JOEHL ◽  
J BRASSEUR ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document