Increase in Calculation Speed of Radiative Heat Transfer in Precision Casting Furnaces of Gas-Turbine Blades

2000 ◽  
Vol 2000.13 (0) ◽  
pp. 129-130
Author(s):  
Shinya OBARA ◽  
Kazuhiko KUDO
1950 ◽  
Vol 162 (1) ◽  
pp. 66-74 ◽  
Author(s):  
J. S. Turnbull

The paper describes a casting process which differs from standard foundry practice in that it uses a wax pattern in a high refractory one-piece mould to produce metal castings with a good surface finish to an accuracy of ±0·002 inch. The process involves making a master pattern in either hard wood or metal, relating it to a soft metal die by precision casting technique, and then the production of wax patterns from the die on an injection machine. Finally, the wax patterns are invested in refractory moulds, the wax is melted out, the mould baked, and the metal component is cast. The “lost wax” process is advantageous in cases where ( a) the metal is unmachinable, or ( b) where the component is of an unmachinable shape, or ( c) where production by other methods takes too long. One of the most common applications is in the manufacture of gas-turbine blades. The tool costs are relatively low compared to the costs involved in alternative methods of manufacture, the die cost being a function of the number of castings required. The production of cheap castings is necessarily dependent on the scrap percentage being kept to a minimum; at present the scrap from the manufacture of gas-turbine blades is less than 30 per cent, and the author surmises that it would not be unreasonable to expect it to be less than 10 per cent in two years' time.


Author(s):  
Antonio Andreini ◽  
Matteo Cerutti ◽  
Bruno Facchini ◽  
Luca Mangani

One of the driving requirements in gas turbine design is the combustion analysis. The reduction of exhaust pollutant emissions is in fact the main design constraint of modern gas turbine engines, requiring a detailed investigation of flame stabilization criteria and temperature distribution within combustion chamber. At the same time, the prediction of thermal loads on liner walls continues to represent a critical issue especially with diffusion flame combustors which are still widely used in aeroengines. To meet such requirement, design techniques have to take advantage also of the most recent CFD tools that have to supply advanced combustion models according to the specific application demand. Even if LES approach represents a very accurate approach for the analysis of reactive flows, RANS computation still represents a fundamental tool in industrial gas turbine development, thanks to its optimal tradeoff between accuracy and computational costs. This paper describes the development and the validation of both combustion and radiation models in a object-oriented RANS CFD code: several turbulent combustion models were considered, all based on a generalized presumed PDF flamelet approach, valid for premixed and non premixed flames. Concerning radiative heat transfer calculations, two directional models based on the P1-Approximation and the Finite Volume Method were treated. Accuracy and reliability of developed models have been proved by performing several computations on well known literature test-cases. Selected cases investigate several turbulent flame types and regimes allowing to prove code affordability in a wide range of possible gas turbine operating conditions.


2009 ◽  
Vol 30 (13) ◽  
pp. 1077-1086 ◽  
Author(s):  
Peter Heidrich ◽  
Jens V. Wolfersdorf ◽  
Martin Schnieder

1986 ◽  
Vol 108 (1) ◽  
pp. 116-123 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

The accurate prediction of heat transfer coefficients on cooled gas turbine blades requires consideration of various influence parameters. The present study continues previous work with special efforts to determine the separate effects of each of several parameters important in turbine flow. Heat transfer and boundary layer measurements were performed along a cooled flat plate with various freestream turbulence levels (Tu = 1.6−11 percent), pressure gradients (k = 0−6 × 10−6), and cooling intensities (Tw/T∞ = 1.0−0.53). Whereas the majority of previously available results were obtained from adiabatic or only slightly heated surfaces, the present study is directed mainly toward application on highly cooled surfaces as found in gas turbine engines.


Sign in / Sign up

Export Citation Format

Share Document