Finite Element Analysis of Interface Crack Problem by Proportional Method

2004 ◽  
Vol 2004.17 (0) ◽  
pp. 225-226
Author(s):  
Kazuhiro ODA ◽  
Kazuyoshi KAMISUGI
Author(s):  
Jefferson Talledo

Die crack is one of the problems in stacked die semiconductor packages. As silicon dies become thinner in such packages due to miniaturization requirement, the tendency to have die crack increases. This study presents the investigation done on a die crack issue in a stacked die package using finite element analysis (FEA). The die stress induced during the package assembly processes from die attach to package strip reflow was analyzed and compared with the actual die crack failure in terms of the location of maximum die stress at unit level as well as strip level. Stresses in the die due to coefficient of thermal expansion (CTE) mismatch of the package component materials and mechanical bending of the package in strip format were taken into consideration. Comparison of the die stress with actual die crack pointed to strip bending as the cause of the problem and not CTE mismatch. It was found that the die crack was not due to the thermal processes involved during package assembly. This study showed that analyzing die stress using FEA could help identify the root cause of a die crack problem during the stacked die package assembly and manufacturing as crack occurs at locations of maximum stress. The die crack mechanism can also be understood through FEA simulation and such understanding is very important in coming up with robust solution.


2011 ◽  
Vol 121-126 ◽  
pp. 3431-3436
Author(s):  
Guo Quan Yang ◽  
You Qun Zhao ◽  
Jun Yan Li

This paper discussed the theoretical analysis and engineering improvement test verification of the crack problem in the back van of the vehicle. Causes that may result in the crack problem are firstly analyzed and then determined by the finite element analysis. Improvement are given and proved to be effective by the test verification of an improved vehicle. The method used in this paper will contribute to the analysis and solution of the crack problems in some parts of the vehicle and has reference value in engineering application.


2000 ◽  
Vol 2000.1 (0) ◽  
pp. 187-188
Author(s):  
Masaki OMIYA ◽  
Keisuke SUZUKI ◽  
Hirotsugu INOUE ◽  
Kikuo KISHIMOTO ◽  
Toshikazu SHIBUYA

2004 ◽  
Vol 261-263 ◽  
pp. 687-692 ◽  
Author(s):  
Ahmad Kamal Ariffin ◽  
Syifaul Huzni ◽  
Nik Abdullah Nik Mohamed ◽  
Mohd Jailani Mohd Nor

The implementation of inter-element model to simulate crack propagation by using finite element analysis with adaptive mesh is presented. An adaptive finite element mesh is applied to analyze two-dimension elastoplastic fracture during crack propagation. Displacement control approach and updated Lagrangean strategy are used to solve the non-linearity in geometry, material and boundary for plane stress crack problem. In the finite element analysis, remeshing process is based on stress error norm coupled with h-version mesh refinement to find an optimal mesh. The crack is modeled by splitting crack tip node and automatic remeshing calculated for each step of crack growth. Crack has been modeled to propagate through the inter-element in the mesh. The crack is free to propagates without predetermine path direction. Maximum principal normal stress criterion is used as the direction criteria. Several examples are presented to show the results of the implementation.


Sign in / Sign up

Export Citation Format

Share Document