The Implementation of Inter-Element Model for Crack Growth Simulation

2004 ◽  
Vol 261-263 ◽  
pp. 687-692 ◽  
Author(s):  
Ahmad Kamal Ariffin ◽  
Syifaul Huzni ◽  
Nik Abdullah Nik Mohamed ◽  
Mohd Jailani Mohd Nor

The implementation of inter-element model to simulate crack propagation by using finite element analysis with adaptive mesh is presented. An adaptive finite element mesh is applied to analyze two-dimension elastoplastic fracture during crack propagation. Displacement control approach and updated Lagrangean strategy are used to solve the non-linearity in geometry, material and boundary for plane stress crack problem. In the finite element analysis, remeshing process is based on stress error norm coupled with h-version mesh refinement to find an optimal mesh. The crack is modeled by splitting crack tip node and automatic remeshing calculated for each step of crack growth. Crack has been modeled to propagate through the inter-element in the mesh. The crack is free to propagates without predetermine path direction. Maximum principal normal stress criterion is used as the direction criteria. Several examples are presented to show the results of the implementation.

2014 ◽  
Vol 971-973 ◽  
pp. 581-583
Author(s):  
Tian Hong Gao

according to the heat load of diesel engine piston, to set up the finite element model and the corresponding thermal boundary conditions of 3D thermal models of the diesel engine piston, Through the finite element analysis , simulating the temperature field. Through the above finite element analysis,getting the temperature field of diesel engine piston, to build a theoretical basis for the development and design of other diesel engine piston.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5224
Author(s):  
Abdulnaser M. Alshoaibi ◽  
Yahya Ali Fageehi

This study presents a developed finite element code written by Visual Fortran to computationally model fatigue crack growth (FCG) in arbitrary 2D structures with constant amplitude loading, using the linear elastic fracture mechanics (LEFM) concept. Accordingly, optimizing an FCG analysis, it is necessary to describe all the characteristics of the 2D model of the cracked component, including loads, support conditions, and material characteristics. The advancing front method has been used to generate the finite element mesh. The equivalent stress intensity factor was used as the onset criteria of crack propagation, since it is the main significant parameter that must be precisely predicted. As such, a criterion premised on direction (maximum circumferential stress theory) was implemented. After pre-processing, the analysis continues with incremental analysis of the crack growth, which is discretized into short straight segments. The adaptive mesh finite element method was used to perform the stress analysis for each increment. The displacement extrapolation technique was employed at each crack extension increment to compute the SIFs, which are then assessed by the maximum circumferential stress theory to determine the direction of the crack growth and predict the fatigue life as a function of crack length using a modified form of Paris’ law. The application examples demonstrate the developed program’s capability and performance.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


2006 ◽  
Vol 306-308 ◽  
pp. 1151-1156 ◽  
Author(s):  
Chong Du Cho ◽  
Heung Shik Lee ◽  
Chang Boo Kim ◽  
Hyeon Gyu Beom

In this paper, a finite element code especially for micro-magnetostrictive actuators was developed. Two significant characteristics of the presented finite element code are: (1) the magnetostrictive hysteresis phenomenon is effectively taken into account; (2) intrinsic geometric feature of typical thin film structures of large length to thickness ratio, which makes it very difficult to construct finite element mesh in the region of the thin film, is considered reasonably in modeling micro-magneostrictive actuators. For verification purpose, magnetostrictive thin films were fabricated and tested in the form of a cantilevered actuator. The Tb-Fe film and Sm-Fe film are sputtered on the Si and Polyimide substrates individually. The magnetic and magnetostrictive properties of the sputtered magnetostrictive films are measured. The measured magnetostrictive coefficients are compared with the numerically calculated ones.


Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Sign in / Sign up

Export Citation Format

Share Document