1017 Design and fabrication of a cell adhesion control device using electric field

2013 ◽  
Vol 2013.51 (0) ◽  
pp. _1017-1_-_1017-2_
Author(s):  
Taijiro HARADA ◽  
Kazuyuki MINAMI ◽  
Yuta NAKASHIMA
2011 ◽  
Vol 29 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Qi-Lian Liang ◽  
Guo-Qiang Chen ◽  
Zhou-Yu Li ◽  
Bi-Rong Wang

2014 ◽  
Vol 92 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Pradipta Banerjee ◽  
Alka Mehta ◽  
C. Shanthi

Collagen, a major structural protein of the ECM, is known for its high cell adherence capacity. This study was conducted to identify regions in collagen that harbour such bioactivity. Collagen from tendon was hydrolysed and the peptides fractionated using ion-exchange chromatography (IEC). Isolated peptide fractions were coated onto disposable dishes and screened for cell adherence and proliferative abilities. Active IEC fractions were further purified by chromatography, and two peptides, C2 and E1 with cell adhesion ability, were isolated. A cell adhesion assay done with different amounts of C2 coated onto disposable dishes revealed the maximum adhesion to be 94.6%, compared with 80% for collagen coated dishes and an optimum peptide coating density of 0.507 nmoles per cm2 area of the dish. Growth of cells on C2, collagen, and E1 revealed a similar pattern and a reduction in the doubling time compared with cells grown on uncoated dishes. C2 had a mass of 2.046 kDa with 22 residues, and sequence analysis revealed a higher percentage occurrence of hydrophilic residues compared with other regions in collagen. Docking studies revealed GDDGEA in C2 as the probable site of interaction with integrins α2β1 and α1β1, and stability studies proved C2 to be mostly protease-resistant.


2002 ◽  
Vol 1 (5) ◽  
pp. 319-327 ◽  
Author(s):  
M. P. Rols ◽  
M. Golzio ◽  
B. Gabriel ◽  
J. Teissié

Electric field pulses are a new approach for drug and gene delivery for cancer therapy. They induce a localized structural alteration of cell membranes. The associated physical mechanisms are well explained and can be safely controlled. A position dependent modulation of the membrane potential difference is induced when an electric field is applied to a cell. Electric field pulses with an overcritical intensity evoke a local membrane alteration. A free exchange of hydrophilic low molecular weight molecules takes place across the membrane. A leakage of cytosolic metabolites and a loading of polar drugs into the cytoplasm are obtained. The fraction of the cell surface which is competent for exchange is a function of the field intensity. The level of local exchange is strongly controlled by the pulse duration and the number of successive pulses. The permeabilised state is long lived. Its lifetime is under the control of the cumulated pulse duration. Cell viability can be preserved. Gene transfer is obtained but its mechanism is not a free diffusion. Plasmids are electrophoretically accumulated against the permeabilised cell surface and form aggregates due to the field effect. After the pulses, several steps follow: translocation to the cytoplasm, traffic to the nucleus and expression. Molecular structural and metabolic changes in cells remain mostly poorly understood. Nevertheless, while most studies were established on cells in culture ( in vitro), recent experiments show that similar effects are obtained on tissue ( in vivo). Transfer remains controlled by the physical parameters of the electrical treatment.


2005 ◽  
Vol 127 (7) ◽  
pp. 2085-2093 ◽  
Author(s):  
Wei Yang ◽  
Anna L. Wilkins ◽  
Yiming Ye ◽  
Zhi-ren Liu ◽  
Shun-yi Li ◽  
...  

Nature ◽  
1989 ◽  
Vol 339 (6219) ◽  
pp. 61-64 ◽  
Author(s):  
Donald E. Staunton ◽  
Michael L. Dustin ◽  
Timothy A. Springer
Keyword(s):  
A Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document