HOPG diamagnetic magnetic force measurement and calculation for Halbach array permanent magnet magnetic field

2020 ◽  
Vol 2020 (0) ◽  
pp. 528
Author(s):  
Tsunemasa FUNATSU ◽  
Mochimitsu KOMORI
2012 ◽  
Vol 472-475 ◽  
pp. 912-916
Author(s):  
Ding Guo Huang ◽  
Song Liu ◽  
Hong Guang Jiao ◽  
Fei Yue Wang

This new dry magnetic separator has a special structure. It has many magnetic roll which are staggered like a stairsteps. It can finish the task of separating different minerals with only this one machine. And also it can make the different magnetic material which are in the same mineral separate at the same time. The permanent magnet system is made of large fan-shaped magnet. The magnet pole N and S are staggered and has perfect performance of magnetic separation. And the magnetic force is made full use by going-up dynamic separation. And also it gives an analysis of stress in the magnetic field. It also shows that its separation idex is better, the economic benefits are obvious, and it has broader prospects of popularization and application.


2012 ◽  
Vol 271-272 ◽  
pp. 1636-1640
Author(s):  
Xiao Yan Tang ◽  
Zhong Yun ◽  
Chuang Xiang

The calculation model of the single turn rectangle current carrying coil was established. The theoretic formula for calculating the magnetic field intensity of any point in space was derived. For a pair of radial magnetizing permanent magnets, the formula for calculating the magnetic force of permanent magnet in the magnetic field was deduced based on the equivalent current theory of permanent magnet. According to the formula, the influencing factors and the changing rules for the magnetic force of permanent magnet can be seen directly: the current, the coil turns are proportional to its magnetic force, while the coupling distance is inversely proportional to its magnetic force.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3339
Author(s):  
Daniel Dziob ◽  
Jakub Ramian ◽  
Jan Ramian ◽  
Bartosz Lisowski ◽  
Jadwiga Laska

The aim of the work was to design and construct a microscopic stage that enables the observation of biological cells in a magnetic field with a constant magnetic force. Regarding the requirements for biological observations in the magnetic field, construction was based on the standard automatic stage of an optical microscope ZEISS Axio Observer, and the main challenge was to design a set of magnets which were the source of a field in which the magnetic force was constant in the observation zone. Another challenge was to design a magnet arrangement producing a weak magnetic field to manipulate the cells without harming them. The Halbach array of magnets was constructed using permanent cubic neodymium magnets mounted on a 3D printed polymer ring. Four sets of magnets were used, differing in their dimensions, namely, 20, 15, 12, and 10 mm. The polymer rings were designed to resist magnetic forces and to keep their shape undisturbed when working under biological conditions. To check the usability of the constructs, experiments with magnetic microparticles were executed. Magnetic microparticles were placed under the microscope and their movement was observed to find the acting magnetic force.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Shiyu Wang ◽  
Bang Xie ◽  
Chenxin Wang ◽  
Jie Xiu

Permanent magnet (PM) induced vibration is one of the major concerns for PM motors. This work aims at the identification and suppression of the vibration source from magnetic field distortions caused by magnet/slot combination, uneven-magnetization, and magnet shifting. Modulation method is employed to predict the relationships between parameters and unbalanced magnetic force (UMF) and cogging torque (CT). Motivated by the magnetic field periodicity and structure especially air-gap symmetry, a new concept of equivalent magnet (EM) wherein one or more real magnets are defined as an imaginary one is introduced to help predict the unexpected force harmonics normally lower than magnet number, and rotation-frequency is used to present unified interpretation on magnetic force regarding the three distortions. The results imply that the relationships are determined by magnet/EM/slot combination including their greatest common divisor (GCD). Compared with CT, the UMF is more sensitive to the uneven-magnetization and magnet shifting. Like ideal motors, if the GCD is greater than unity, the UMF is eliminated, but the CT is not simply via altering the combination. The results also show that magnetic forces for the same EM/slot combinations share similar behaviors regardless of specific magnetic field details. The results can be utilized to suppress undesirable force, or inspect magnetization and installation status by monitoring force frequency and its amplitude, or gain vibration suppression by magnet's selective assembly. The modulation method, EM concept, and main findings are successfully verified by the finite element method (FEM) and comparison with the existing results in the literature. Main contribution of this work is the unified explanation on the relationships between the three distortions and unique force behaviors, especially the prediction on those unexpected harmonic forces.


Sign in / Sign up

Export Citation Format

Share Document