1813 Study on the Performance of a Cross-flow Wind Turbine with Guide Vane

2005 ◽  
Vol 2005 (0) ◽  
pp. 270
Author(s):  
Ken-ichi KANEKO ◽  
Satoshi KAGAWA ◽  
Yoshiharu TSUJIKAWA
Keyword(s):  
2000 ◽  
Vol 2000 (0) ◽  
pp. 263
Author(s):  
Aya YAMADA ◽  
Koki KISHINAMI ◽  
Kouji KOBAYASHI ◽  
Jun SUZUKI ◽  
Norihei KON ◽  
...  

2018 ◽  
Vol 159 ◽  
pp. 02014 ◽  
Author(s):  
Budi Santoso ◽  
Dominicus Danardono Dwi Prija Tjahjana

The purpose of this experiment is to know the influence of a single guide vane position and angle to the performance of a cross-flow wind turbine. The cross-flow wind turbine was positioned at the discharge outlet of a cooling tower model to harness the discharged wind for electricity generation. A guide vane was used to enhance the rotational speed of the turbines for power augmentation. Various position and angle of attack of the guide vane were tested in this experiment. To avoid negative impact on the performance of the cooling tower fan and to optimize the wind turbine performance, the turbine position on the discharge wind stream was also studied. The result showed that cross-flow wind turbine with a guide vane attached at the right position had a higher coefficient of power than cross flow turbine without guide vane. A crossflow wind turbine with the guide vane at the position of 150 mm from the center and 30° angles had the highest coefficient of power of 0.49. Comparing to the wind turbine without guide vane, the coefficient of power of the cross-flow wind turbine was increased about 84.3%.


2001 ◽  
Vol 2001.11 (0) ◽  
pp. 464-467
Author(s):  
Aya YAMADA ◽  
Koki KISHINAMI ◽  
Kouji KOBAYASHI ◽  
Jun SUZUKI ◽  
Norihei KON ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Author(s):  
Waled Yahya ◽  
Kou Ziming ◽  
Wu Juan ◽  
Mohammed Al-Nehari ◽  
Li Tengyu ◽  
...  
Keyword(s):  

2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


Sign in / Sign up

Export Citation Format

Share Document