ICONE19-43189 Thermal Fatigue Analysis for Pressurizer Surge Line Subjected to Thermal Stratification Using CFD Calculation Result

2011 ◽  
Vol 2011.19 (0) ◽  
pp. _ICONE1943-_ICONE1943
Author(s):  
Dong-Gu Kang ◽  
Myung-Jo Jhung ◽  
Kwang-Won Seul
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Benan Cai ◽  
Qi Zhang ◽  
Yu Weng ◽  
Hongfang Gu ◽  
Haijun Wang

Abstract Pipelines such as the surge line and main pipe are easily subjected to thermal stratification and thermal fatigue as a result of the nonuniform temperature distribution in the nuclear power plants. When the surge line or main pipe subjected to thermal stratification and thermal fatigue keeps operating for long time, the pipe leakage may happen due to the existence of pipeline crack. When the fluids with high temperature and pressure leak in the crack, the water will evaporate quickly, which means this process belongs to spray flash evaporation process. The flash evaporation related to pipe leak was experimentally studied in the paper. The experiment was carried out under high temperature and high pressure with low spray rate. The temperature and relative humidity (T&H) variations over time were monitored in the experiment with installing T&H detectors. The T&H variations at different measurement positions and with different spray rates were analyzed, respectively. In addition, the effect of the dimensionless parameters including the Weber number and Jakob number was also investigated. Results indicated that the response speed increased with the increase of the spray flow rate. Higher Weber number and higher Jakob number led to higher evaporation rate. The slight pipe leakage can be predicted by using the (T&H) in the hazardous areas.


Author(s):  
Bonghee Lee ◽  
Ilkwun Nam ◽  
Sangyun Park ◽  
Sookyum Kim ◽  
Yongbaek Kim

Abstract Thermal stratification-induced stresses could lead to a serious failure and fatigue crack on piping systems. U.S. NRC Bulletin 88-08 [1] requires to investigate which unisolable pipings are subjected to the thermal stratification and to demonstrate compliance with applicable code limits during the piping design stage by incorporating the thermal stratification-induced stresses into the fatigue evaluation. In this paper, the computational fluid dynamic (CFD) analyses considering both the out-leakage case by turbulent penetration and the in-leakage case by valve leakage were performed for the unisolable portion of the Direct Vessel Injection (DVI) piping between the reactor vessel nozzle and the first check valve to determine the change of temperature gradient on the pipe wall as a function of time due to the thermal stratification. And then the CFD-based temperature distributions on the pipe wall at each time interval were transformed as input data for the structural analysis to evaluate the stresses induced by the global bending moments and local stresses by the thermal stratification of the DVI piping. The localized thermal stratification stress intensities were directly extracted from the 3-D model using the ANSYS program and were categorized as the three stress terms induced by ΔT1, ΔT2, and Ta - Tb defined in NB-3600 of ASME B&PV Sec. III [2], but including thermal stratification effects herein for the fatigue analysis. To evaluate the air environment- and LWR environment-based fatigue damages for the DVI piping, the bending moments and three local stress terms due to the thermal stratification were incorporated into the fatigue analysis. NB-3200/-3600 of ASME B&PV Sec. III- and Regulatory Guide 1.207-based cumulative usage factors [3, 4] were compared with each other to investigate the effects of fatigue damages considering the thermal stratification in the air and light water reactor (LWR) environments.


2020 ◽  
Vol 11 (2) ◽  
pp. 04020011 ◽  
Author(s):  
Shenglan Jing ◽  
Zhuoyu Zan ◽  
Chongfang Song ◽  
Jianwei Zhang ◽  
Yonggang Lei ◽  
...  

Author(s):  
Xiaofei Yu ◽  
Yixiong Zhang

Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to confirm the structural integrity of pressurizer surge line affected by thermal stratification, this paper theoretically establishes thermal stratified transient and studies the calculation method of thermal stratified stress. A costly three-dimensional computation is simplified into a combined 1D/2D technique. This technique uses a pipe cross-section for computation of local thermal stresses and represents the whole surge line with one-dimensional pipe elements. The 2D pipe cross-section model is used to compute elastic thermal stresses in plane strain condition. Symmetry allows half the cross-section to be considered. The one-dimensional pipe elements model gives the global bending moments including effects of usual thermal expansion and thermal stratification of each model nodes. This combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line in this paper, using computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The stress and fatigue intensity of the surge line tallies with the correlative criterion.


Sign in / Sign up

Export Citation Format

Share Document