Analysis of Thermal Stratification and Fatigue Stress for Pressurizer Surge Line

Author(s):  
Xiaofei Yu ◽  
Yixiong Zhang

Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to confirm the structural integrity of pressurizer surge line affected by thermal stratification, this paper theoretically establishes thermal stratified transient and studies the calculation method of thermal stratified stress. A costly three-dimensional computation is simplified into a combined 1D/2D technique. This technique uses a pipe cross-section for computation of local thermal stresses and represents the whole surge line with one-dimensional pipe elements. The 2D pipe cross-section model is used to compute elastic thermal stresses in plane strain condition. Symmetry allows half the cross-section to be considered. The one-dimensional pipe elements model gives the global bending moments including effects of usual thermal expansion and thermal stratification of each model nodes. This combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line in this paper, using computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The stress and fatigue intensity of the surge line tallies with the correlative criterion.

Author(s):  
Shengfei Wang ◽  
Yuxin Pang ◽  
Xiaojing Li ◽  
Dandan Fu ◽  
Yang Li ◽  
...  

Thermal stratification phenomena are observed in piping systems of pressurized water reactors, especially in the pressurizer surge line. As a result of the thermal stratification induced thermal stresses, fatigue problems can occur in the pipework. US NRC requirements have also identified flow stratification in surge lines as a phenomenon that must be considered in the design basis of surge lines. In this paper, a new method to reduce thermal stratification is proposed. As we all know, heat pipe is a simple device with no moving parts and can transfer large quantities of heat over fairly large distance. The new method is that using heat pipes to weaken the thermal stratification. In order to validate the new method, a simple experiment and theoretical analysis was taken. The results show that, the temperature difference of thermal stratification with heat pipes is smaller than the stratification without heat pipes. A design scheme was also given at the end of paper.


Author(s):  
Chenfeng Li ◽  
Peng Fu ◽  
Huilong Ren ◽  
Weijun Xu ◽  
C. Guedes Soares

The objective of this study is to investigate the variation of neutral axis of ship hull girder due to asymmetric geometry or asymmetric load, and its influence on the ultimate strength (ULS) of hull girder. In order to account for asymmetric geometries and loads of hull girders, the force equilibrium and force-vector equilibrium criteria together with a minimum convergence factors (error) method are employed to determine the translation and rotation of neutral axis plane (NAP) of symmetric or asymmetric hull cross section in the application of Smith's method at each step of curvature of the hull girder. The ULSs of Dow's 1/3 frigate model with three predefined structural integrity states, one intact and two damaged, respectively, is investigated by the improved Smith's method (ISM) for a range of variation of heeling angles. The influence of asymmetric geometry and load on the motion of NAP and on the ULS are analyzed and discussed. The results show that the improved iteration strategy together with the minimum convergence factors (error) method is efficient and more accurate in searching the translation and rotation of NAP. Finally, the envelope curves of the bending moments in the three predefined integrity states are obtained, which can be used for assessing ULS of hull girders under combined vertical and horizontal wave bending moments.


Author(s):  
ChenFeng Li ◽  
Peng Fu ◽  
HuiLong Ren ◽  
WeiJun Xu ◽  
C. Guedes Soares

The objective of this study is to investigate the variation of neutral axis of ship hull girder due to asymmetric geometry or asymmetric load, and its influence on the ultimate strength of hull girder. In order to account for asymmetric geometries and loads of hull girders, the force equilibrium and force-vector equilibrium criteria together with a minimum convergence factors (error) method, are employed to determine the translation and rotation of neutral axis plane of symmetric or asymmetric hull cross-section in the application of Smith’s method at each step of curvature of the hull girder. The ultimate strengths of Dow’s 1/3 frigate model with three predefined structural integrity states, one intact and two damaged respectively, are investigated by the improved Smith’s method for a range of variation of heeling angles. The influence of asymmetric geometry and load on the motion of neutral axis plane and on the ultimate strength are analyzed and discussed. The results show that the improved iteration strategy together with the MCFM is self-adapting and more accurate in searching the translation and rotation of neutral axis plane. Finally, the envelope curves of the bending moments in the three predefined integrity states are obtained, which can be used for assessing ultimate strength of hull girders under combined vertical and horizontal wave bending moments.


2012 ◽  
Vol 468-471 ◽  
pp. 78-82 ◽  
Author(s):  
Athar Rasool ◽  
Zhong Ning Sun ◽  
Jian Jun Wang ◽  
Zeng Fang Ge ◽  
Majid Ali

Thermal stratification effects have been a great concern in a pressurizer surge line of pressurized water reactor (PWR) since 1988. These effects may damage the structural integrity and contribute in reducing the operational life time of pressurizer surge line. Several nuclear power plants operators have so far reported such mechanical damages. To realistically assess the structural integrity of pressurizer surge line subjected to thermal stratification, it is necessary to analyze the transient temperature distribution. Several researchers and scholars have carried out considerable efforts to determine the temperature distributions in the pressurizer surge line. In this study, an effort has been made to simulate the behavior of thermally stratified flow and predict the transient temperature distributions in the pressurizer surge line realistically. To obtain realistic results for such complex geometry of pressurizer surge line 3D analysis is performed using CFX commercially available CFD software. The transient temperature distributions obtained are presented and discussed.


Author(s):  
Ji Soo Ahn ◽  
Michael Bluck ◽  
Matthew Eaton ◽  
Chris Jackson

In this study, RELAP5’s capability to simulate thermal stratification under different conditions is assessed. In nuclear power plants (NPPs), thermal stratification can occur in the following locations: pressurizer, piping systems such as hot legs, cold legs, surge lines, and cooling tanks if available. In general, thermal stratification in a horizontal pipe could not be simulated by RELAP5 due to the inherent one-dimensional setting. Moreover, RELAP5 failed to simulate turbulent penetration which was often a pre-requisite prior to thermal stratification in a pipe. This type of situation could arise in connection between hot leg and surge line, spray lines, feed water lines, etc. It is recommended that for this type of problem CFD be used. In the literature, it was found that RELAP5 was capable of simulating thermal stratification in a pool or a tank-like component if multiple channels and crossflow junctions were used. However, due to uncertainties associated with the input model, the current RELAP5 model failed to reproduce experimental data and therefore further investigation would be required to identify the sources of error.


Author(s):  
Dong Gu Kang ◽  
Jong Chull Jo

Temperature gradients in the thermally stratified fluid flowing through a pipe may cause undesirable excessive thermal stresses at the pipe wall in the axial, circumferential, and radial directions, which can eventually lead to damages such as deformation, support failure, thermal fatigue, cracking, etc. to the piping systems. Several nuclear power plants have so far experienced such unwelcome mechanical damages to the pressurizer surge lines, feedwater nozzle, high pressure safety injection lines, or residual heat removal lines. In this regard, to determine the transient temperature distributions in the wall of a piping system subjected to internally thermal stratification with accuracy is the essential prerequisite for the assessment of the structural integrity of the piping system subjected to internally thermal stratification. In this study, to predict the transient temperature distributions in the wall of PWR pressurizer surge line with a complex geometry of 3-dimensionally bent piping realistically, 3-dimensional transient CFD calculations involving the conjugate heat transfer analysis are performed for the actual PWR pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation using a commercial CFD code. In addition, the wall temperature distributions obtained by taking account of the existence of wall thickness as it is are compared with those by neglecting the existence of wall thickness to identify some requirements for a realistic and conservative thermal analysis.


Author(s):  
Benan Cai ◽  
Qi Zhang ◽  
Yu Weng ◽  
Hongfang Gu ◽  
Haijun Wang

Pipelines are widely used in many fields including power industry, petroleum system etc. Pipelines such as the surge line and main pipe are easily subjected to thermal stratification as a result of the non-uniform temperature distribution in the nuclear power plants. Furthermore, pipelines can suffer from thermal fatigue in virtue of long-term uneven stress distribution. When the surge line or main pipe subjected to thermal stratification and thermal fatigue keeps operating for long time, the pipe leakage may happen because of the existence of pipeline crack. The thermal pipeline crack leakage mainly appears in the region with stress concentration. As the pipe system is always covered with thermal insulation layer in the actual nuclear power plants, it is hard for workers to observe pipeline leak, which can have a bad effect on the normal operation. Since the temperature and humidity close to the pipe crack due to leakage can change compared to the normal operation, we can infer from the temperature and humidity changes that the pipe leakage occurs. Based on this idea, the temperature and humidity near the crack of the pipe need to be measured to detect the leakage fields. As the fluids with high pressure and high temperature flow in the pipe system in an actual nuclear power plant, the pipe leakage experiment was performed in the high pressure and high temperature condition. When the fluids with high temperature and pressure leak in the crack, the water will evaporate quickly, which means this process belongs to spray flash evaporation process. The temperature and humidity variations were monitored in the experiment with temperature and humidity probes which have the advantage of responding to the change of temperature and humidity sensitively. The data collection program was mainly written based on the LABVIEW platform. The collecting time step was set 1s. As the measuring position and leakage flux are two key factors for the pipe leakage, the experiment was carried out with different measuring positions and leakage fluxes conditions. The experimental results showed that the leak flux had an important influence on the temperature and humidity near the pipe crack. The temperature and humidity started to change in a very short time with large leak flux. At the same time, the velocity of the temperature and humidity change was high with large leak flux. When the pipe leakage occurred in the location near the temperature and humidity probe, the temperature and humidity responded quickly and the velocity of temperature and humidity change was large. The experiment data can be used for the prediction of the pipe leakage in the nuclear power plants.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


2001 ◽  
Vol 68 (6) ◽  
pp. 865-868 ◽  
Author(s):  
P. Ladeve`ze ◽  
J. G. Simmonds

The exact theory of linearly elastic beams developed by Ladeve`ze and Ladeve`ze and Simmonds is illustrated using the equations of plane stress for a fully anisotropic elastic body of rectangular shape. Explicit formulas are given for the cross-sectional material operators that appear in the special Saint-Venant solutions of Ladeve`ze and Simmonds and in the overall beamlike stress-strain relations between forces and a moment (the generalized stress) and derivatives of certain one-dimensional displacements and a rotation (the generalized displacement). A new definition is proposed for built-in boundary conditions in which the generalized displacement vanishes rather than pointwise displacements or geometric averages.


2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


Sign in / Sign up

Export Citation Format

Share Document