COMMISSIONING TECHNOLOGY RESEARCH OF SPENT FUEL STORAGE RESIDUAL HEAT REMOVAL SYSTEM OF HTR-PM

Author(s):  
Jinhua WANG ◽  
Yue LI ◽  
Bin WU ◽  
Yuchen HAO ◽  
Haitao WANG
Author(s):  
Jinhua Wang ◽  
Bing Wang ◽  
Bin Wu ◽  
Jiguo Lui

Chinese 10 MW High Temperature Gas Cooled Reactor (HTR-10) has inherent safety; the residual heat of the spent fuel could be removed by natural ventilation in loading process. The spent fuel storage tank could shield radiation; the outside is covered by an iron sleeve; the spent fuel tank would be stored in atmosphere after fully loaded, and the residual heat could be discharged by natural ventilation in interim storage stage. The calculation showed that, the maximum temperature locates in the middle of the fuel pebble bed in the spent fuel tank in loading process and interim storage stage, and the temperature decrease gradually with radial distance; the temperature in the tank body and sleeve is evenly; it is feasible to remove the residual heat of the spent fuel tank by natural ventilation, and in the natural ventilation condition, the temperature of the spent fuel and the tank is lower than the temperature limit, which provides theoretical evidence for the choice of the residual heat removal method in loading process and interim storage stage.


2016 ◽  
Vol 89 ◽  
pp. 56-62 ◽  
Author(s):  
Yeon-Sik Kim ◽  
Sung-Won Bae ◽  
Seok Cho ◽  
Kyoung-Ho Kang ◽  
Hyun-Sik Park

2021 ◽  
Vol 140 ◽  
pp. 103929
Author(s):  
Qianhua Su ◽  
Haiyan Xu ◽  
Donghua Lu ◽  
Xiaohang Wu ◽  
Xi Yao ◽  
...  

2014 ◽  
Vol 986-987 ◽  
pp. 231-234
Author(s):  
Jun Teng Liu ◽  
Qi Cai ◽  
Xia Xin Cao

This paper regarded CNP1000 power plant system as the research object, which is the second-generation half Nuclear Reactor System in our country, and tried to set Westinghouse AP1000 passive residual heat removal system to the primary circuit of CNP1000. Then set up a simulation model based on RELAP5/MOD3.2 program to calculate and analyze the response and operating characteristic of passive residual heat removal system on assumption that Station Blackout occurs. The calculation has the following conclusions: natural circulation was quickly established after accident, which removes core residual heat effectively and keep the core safe. The residual heat can be quickly removed, and during this process the actual temperature was lower than saturation temperature in reactor core.


2017 ◽  
Vol 98 ◽  
pp. 23-28 ◽  
Author(s):  
Li-hao Chen ◽  
Tao Ma ◽  
Yan-hua Zheng ◽  
Hang-bin Zhao ◽  
Fu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document