Estimation of Lower Limb Joint Moments While Walking by Using Deep Learning

Author(s):  
Takeru KIMURA ◽  
Kyoko SHIBATA
2021 ◽  
Author(s):  
Diogo F. Almeida ◽  
Patricio Astudillo ◽  
Dirk Vandermeulen

2019 ◽  
Vol 88 ◽  
pp. 18-24 ◽  
Author(s):  
Feng Yang ◽  
Margaret Underdahl ◽  
Han Yang ◽  
Chunxin Yang

2015 ◽  
Vol 742 ◽  
pp. 535-539
Author(s):  
Kun Liu ◽  
Jian Chen Zhao ◽  
En Guo Cao ◽  
Xuan Han

A new method for analyzing lower limb kinetics during sit to stand process is presented, and a trajectory control method (TCM) and an impedance control method (ICM) for a rehabilitation robot are developed. During the sit to stand process (SSP), body segment rotational angles, movement trajectories, ground reaction forces (GRF), center of pressure (COP) and rope tensile forces are measured by the robot sensor system, and the joint moments of ankle, knee and hip are calculated in real-time control program. Test experiments were performed on six volunteers. The experimental results validate the theory that the control methods can assure the accomplishment of the sit to stand process in comfortable postures, and improve the condition of joint moments. The control methods are suitable for self-supported home training, and can be applied to assess kinetics parameters during the sit to stand process and improve the rehabilitation of patients.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5517 ◽  
Author(s):  
Dong Sun ◽  
Gusztáv Fekete ◽  
Qichang Mei ◽  
Yaodong Gu

Background Normative foot kinematic and kinetic data with different walking speeds will benefit rehabilitation programs and improving gait performance. The purpose of this study was to analyze foot kinematics and kinetics differences between slow walking (SW), normal walking (NW) and fast walking (FW) of healthy subjects. Methods A total of 10 healthy male subjects participated in this study; they were asked to carry out walks at a self-selected speed. After measuring and averaging the results of NW, the subjects were asked to perform a 25% slower and 25% faster walk, respectively. Temporal-spatial parameters, kinematics of the tibia (TB), hindfoot (HF), forefoot (FF) and hallux (HX), and ground reaction forces (GRFs) were recorded while the subjects walked at averaged speeds of 1.01 m/s (SW), 1.34 m/s (NW), and 1.68 m/s (FW). Results Hindfoot relative to tibia (HF/TB) and forefoot relative to hindfoot (FF/HF) dorsiflexion (DF) increased in FW, while hallux relative to forefoot (HX/FF) DF decreased. Increased peak eversion (EV) and peak external rotation (ER) in HF/TB were observed in FW with decreased peak supination (SP) in FF/HF. GRFs were increased significantly with walking speed. The peak values of the knee and ankle moments in the sagittal and frontal planes significantly increased during FW compared with SW and NW. Discussion Limited HF/TB and FF/HF motion of SW was likely compensated for increased HX/FF DF. Although small angle variation in HF/TB EV and FF/HF SP during FW may have profound effects for foot kinetics. Higher HF/TB ER contributed to the FF push-off the ground while the center of mass (COM) progresses forward in FW, therefore accompanied by higher FF/HF abduction in FW. Increased peak vertical GRF in FW may affected by decreased stance duration time, the biomechanical mechanism maybe the change in vertical COM height and increase leg stiffness. Walking speed changes accompanied with modulated sagittal plane ankle moments to alter the braking GRF during loading response. The findings of foot kinematics, GRFs, and lower limb joint moments among healthy males may set a reference to distinguish abnormal and pathological gait patterns.


2018 ◽  
Vol 26 ◽  
pp. S391-S392
Author(s):  
W.A. Alghamdi ◽  
S.J. Preece ◽  
R. Jones ◽  
H. Tucker

Sign in / Sign up

Export Citation Format

Share Document