vibration intensity
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 36)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 5 (6) ◽  
pp. 6-10
Author(s):  
Lian Shi ◽  
Lei Liu

The vibration measuring standard for compound machinery utilized in modern industrial production will be employed for the application of detecting technologies. The vibration intensity can be obtained by selecting the detecting method to obtain the speed of mechanical vibration, and technicians can examine whether the vibrating machinery is in a proper functioning state based on the value of vibration intensity, allowing for thorough fault diagnosis. In order to provide useful diagnosis ideas for technicians, this study examines the measurement of mechanical vibration and investigates the calculating method of mechanical vibration intensity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wanjoo Park ◽  
Sung-Phil Kim ◽  
Mohamad Eid

Vibrotactile feedback technology has become widely used in human–computer interaction due to its low cost, wearability, and expressiveness. Although neuroimaging studies have investigated neural processes associated with different types of vibrotactile feedback, encoding vibration intensity in the brain remains largely unknown. The aim of this study is to investigate neural processes associated with vibration intensity using electroencephalography. Twenty-nine healthy participants (aged 18–40 years, nine females) experienced vibrotactile feedback at the distal phalanx of the left index finger with three vibration intensity conditions: no vibration, low-intensity vibration (1.56 g), and high-intensity vibration (2.26 g). The alpha and beta band event-related desynchronization (ERD) as well as P2 and P3 event-related potential components for each of the three vibration intensity conditions are obtained. Results demonstrate that the ERD in the alpha band in the contralateral somatosensory and motor cortex areas is significantly associated with the vibration intensity. The average power spectral density (PSD) of the peak period of the ERD (400–600 ms) is significantly stronger for the high- and low-vibration intensity conditions compared to the no vibration condition. Furthermore, the average PSD of the ERD rebound (700–2,000 ms) is significantly maintained for the high-vibration intensity compared to low-intensity and no vibration conditions. Beta ERD signals the presence of vibration. These findings inform the development of quantitative measurements for vibration intensities based on neural signals.


Author(s):  
Lijun Chen ◽  
Yanggang Feng ◽  
Baojun Chen ◽  
Qining Wang ◽  
Kunlin Wei

Abstract Background For people with lower-limb amputations, wearing a prosthetic limb helps restore their motor abilities for daily activities. However, the prosthesis's potential benefits are hindered by limited somatosensory feedback from the affected limb and its prosthesis. Previous studies have examined various sensory substitution systems to alleviate this problem; the prominent approach is to convert foot–ground interaction to tactile stimulations. However, positive outcomes for improving their postural stability are still rare. We hypothesized that the sensory substiution system based on surrogated tactile stimulus is capable of improving the standing stability among people with lower-limb amputations. Methods We designed a wearable device consisting of four pressure sensors and two vibrators and tested it among people with unilateral transtibial amputations (n = 7) and non-disabled participants (n = 8). The real-time measurements of foot pressure were fused into a single representation of foot–ground interaction force, which was encoded by varying vibration intensity of the two vibrators attached to the participants’ forearm. The vibration intensity followed a logarithmic function of the force representation, in keeping with principles of tactile psychophysics. The participants were tested with a classical postural stability task in which visual disturbances perturbed their quiet standing. Results With a brief familiarization of the system, the participants exhibited better postural stability against visual disturbances when switching on sensory substitution than without. The body sway was substantially reduced, as shown in head movements and excursions of the center of pressure. The improvement was present for both groups of participants and was particularly pronounced in more challenging conditions with larger visual disturbances. Conclusions Substituting otherwise missing foot pressure feedback with vibrotactile signals can improve postural stability for people with lower-limb amputations. The design of the mapping between the foot–ground interaction force and the tactile signals is essential for the user to utilize the surrogated tactile signals for postural control, especially for situations that their postural control is challenged.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022074
Author(s):  
Roman N Golykh ◽  
Vladimir N Khmelev ◽  
Ivan A Manyakhin ◽  
Dmitry A Ilchenko ◽  
Vyacheslav D Minakov ◽  
...  

Abstract The linear model of macromolecules was proposed. Expression for probability of macromolecules breakup under ultrasonic cavitation action was obtained. The fractional composition and viscosity of uncured polymer were calculated. As a result of the calculations, it was evaluated that the cavitation-acoustic effect for a time of no more than 1 min at an vibration intensity of at least 6 W/cm2 and an initial viscosity of 0.2 Pa· s reduces the viscosity of polymers by at least 8 times. At the same time, it was theoretically revealed that the cavitation-acoustic effect is also capable of reducing the viscosity of polymers with an initial viscosity of more than 1 Pa·s up to 4 times.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Linjing Xiao ◽  
Qiang Liu

This paper analyzes the transverse vibration laws of 5000 m ladder-shaped mining pipe under different towing velocities and accelerations in the ocean, thinking of the pipe as the beam model, discretized based on the FEM. The algorithm is used to solve the problem to obtain the transverse vibration law. The research shows that the mining pipe overall transverse vibration trend decreases first and then increases, the minimum vibration value occurs at 3000 m, and the maximum occurs at the top. Increasing the towing velocity, acceleration, and ore bin weight will increase the transverse vibration value. The vibration intensity produced by the same acceleration in the constant acceleration and deceleration stages is different, and the damping effect after adding the same damping is also different. In the range of 0.01 m/s2–0.1 m/s2, the vibration reduction effect after adding damping in the constant deceleration stage is more significant, and in the range of 0.1 m/s2-0.2 m/s2, the vibration reduction effect after adding damping in the constant acceleration stage is more significant. In the stage of the constant acceleration or deceleration, when adding the same damping, the vibration intensity generated by the large acceleration is still far greater than the vibration intensity generated by the small acceleration, so the mining ship should keep the small acceleration for towing motion.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 631
Author(s):  
Chi Yu ◽  
Runhui Geng ◽  
Xinwen Wang

Vibrating flip-flow screens (VFFS) are widely used to separate high-viscosity and fine materials. The most remarkable characteristic is that the vibration intensity of the screen frame is only 2–3 g (g represents the gravitational acceleration), while the vibration intensity of the screen surface can reach 30–50 g. This effectively solves the problem of the blocking screen aperture in the screening process of moist particles. In this paper, the approximate state of motion of the sieve mat is realized by setting the discrete rigid motion at multiple points on the elastic sieve mat of the VFFS. The effects of surface energy levels between particles separated via screening performance were compared and analyzed. The results show that the flow characteristics of particles have a great influence on the separation performance. For 8 mm particle screening, the particle’s velocity dominates its movement and screening behavior in the range of 0–8 J/m2 surface energy. In the feeding end region (Section 1 and Section 2), with the increase in the surface energy, the particle’s velocity decreases, and the contact time between the particles and the screen surface increases, and so the passage increases. When the surface energy level continues to increase, the particles agglomerate together due to the effect of the cohesive force, and the effect of the particle’s agglomeration is greater than the particle velocity. Due to the agglomeration of particles, the difficulty of particles passing through the screen increases, and the yields of various size fractions in the feeding end decrease to some extent. In the transporting process, the agglomerated particles need to travel a certain distance before depolymerization, and the stronger the adhesive force between particles, the larger the depolymerization distance. Therefore, for the case of higher surface energy, the screening percentage near the discharging end (Section 3 and Section 4) is greater. The above research is helpful to better understand and optimize the screening process of VFFS.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Qiang Liu ◽  
Lin-jing Xiao

In this paper, the 5000 m mining pipe is taken as the research object, and the transverse and longitudinal vibration laws of the pipe under different working conditions are analyzed. Based on the finite element method (FEM), the pipe is discretized and calculated by the Wilson-θ Wilson - θ integral method; finally, the corresponding vibration laws of the mining pipe are obtained. The research shows that the mining pipe vibration responses are irregular motion, with the obvious oscillation phenomenon, and the overall vibration trend decreases first and then increases from the top to the bottom; the maximum vibration response occurs at the pipe top. Under the same working conditions, increasing the towing velocity will decrease the overall longitudinal vibration amplitude and increase the overall transverse vibration amplitude. While the ore bin weight will increase the longitudinal vibration amplitude and decrease the transverse vibration amplitude, increasing the mining pipe large diameter stepped section length and damping will decrease the longitudinal and transverse vibration simultaneously. When the towing velocity is between 0–2.8 m/s, the longitudinal vibration intensity is large, which is the main vibration mode. When the towing velocity is 2.8 m/s, the critical point is reached, and the longitudinal and transverse vibrations have the same intensity. When the towing velocity is greater than 2.8 m/s, the transverse vibration intensity is gradually greater than the longitudinal vibration intensity; at this time, the control of the transverse vibration should be appropriately increased.


Sign in / Sign up

Export Citation Format

Share Document