Response analysis of a system with a nonlinear spring under random excitation via complex fractional moment

Author(s):  
Daizoh Itoh ◽  
Takahiro Tsuchida
2019 ◽  
Vol 293 ◽  
pp. 04004
Author(s):  
Jinping Chen ◽  
Li Zhang ◽  
Yanyan Luo ◽  
Haining Zhang ◽  
Jun Liu

The magnetic bearing-rotor system is subject to various external disturbances in practical application. Under certain control conditions, the random response characteristics of the magnetic bearing-rotor system are a particular concern. This paper analyzes the response characteristics of base of the magnetic bearing subjected to acceleration random excitation in the horizontal direction. First, the magnetic bearing-rotor system model is deduced. Then, the random response of the rotor under acceleration random excitation is derived. The probability of the collision of the rotor between the auxiliary bearing is calculated and the example is given. The paper conclusion provides a theoretical basis for the collision detection and prediction of the magnetic bearing-rotor system.


Author(s):  
C. W. S. To

This paper is concerned with large nonlinear random response analysis of spatially non-homogeneous stochastic shell structures under transient excitations. The latter are treated as nonstationary random excitation processes. The emphases are on (i) spatially non-homogeneous and homogeneous stochastic shell structures with large spatial variations, (ii) large nonlinear responses with finite strains and finite rotations, and (iii) intensive nonstationary random disturbances. The shell structures are approximated by the lower order mixed or hybrid strain based triangular shell finite elements developed earlier by the author and his associate. The nonstationary random nonlinear responses are evaluated by a procedure that consists of the stochastic central difference method, time co-ordinate transformation, and modified adaptive time scheme. Computationally, the procedure is very efficient compared with those entirely and partially based on Monte Carlo simulation, and is free from the limitations associated with those employing perturbation approximation techniques, such as the so-called stochastic finite element or probabilistic finite element method.


1968 ◽  
Vol 35 (3) ◽  
pp. 560-564 ◽  
Author(s):  
E. T. Foster

Random vibration problems are discussed for weakly nonlinear, multidegree-of-freedom discrete systems subjected to zero-mean, stationary random excitation. The semilinear solution technique developed involves substituting an optimum linear set of equations of motion for the actual nonlinear equations of motion. Parameters of this optimum linear system are selected on the basis of the system output so that a cyclic solution occurs. The cycles require parameter selection and response analysis until a convergence occurs in the sense that the answers from cycle to cycle are similar.


Sign in / Sign up

Export Citation Format

Share Document