scholarly journals A53 Fatigue Properties of a Friction Stir Welded A6063 Alloy under Two-step Variable Plane Bending

2009 ◽  
Vol 2009.62 (0) ◽  
pp. 35-36
Author(s):  
Yohei HAYASHI ◽  
Atsuhiro KOYAMA ◽  
Toru TAKASE
2014 ◽  
Vol 891-892 ◽  
pp. 1488-1493 ◽  
Author(s):  
José Azevedo ◽  
Virgínia Infante ◽  
Luisa Quintino ◽  
Jorge dos Santos

The development and application of friction stir welding (FSW) technology in steel structures in the shipbuilding industry provide an effective tool of achieving superior joint integrity especially where reliability and damage tolerance are of major concerns. Since the shipbuilding components are inevitably subjected to dynamic or cyclic stresses in services, the fatigue properties of the friction stir welded joints must be properly evaluated to ensure the safety and longevity. This research intends to fulfill a clear knowledge gap that exists nowadays and, as such, it is dedicated to the study of welded steel shipbuilding joints in GL-A36 steel, with 4 mm thick. The fatigue resistance of base material and four plates in as-welded condition (using several different parameters, tools and pre-welding conditions) were investigated. The joints culminate globally with defect-free welds, from which tensile, microhardness, and fatigue analyses were performed. The fatigue tests were carried out with a constant amplitude loading, a stress ratio of R=0.1 and frequency between 100 and 120 Hz. The experimental results show the quality of the welding process applied to steel GL-A36 which is reflected in the mechanical properties of joints tested.


2018 ◽  
Vol 59 (3) ◽  
pp. 475-481 ◽  
Author(s):  
Angga Afrinaldi ◽  
Toshifumi Kakiuchi ◽  
Shohei Nakagawa ◽  
Hiroshi Moritomi ◽  
Kazuhiro Kumabe ◽  
...  

2019 ◽  
Vol 127 ◽  
pp. 551-563 ◽  
Author(s):  
Ratnesh Kumar Raj Singh ◽  
Rajesh Prasad ◽  
Sunil Pandey ◽  
Satish Kumar Sharma

2008 ◽  
Vol 385-387 ◽  
pp. 849-852 ◽  
Author(s):  
Pasquale Cavaliere ◽  
Francesco W. Panella ◽  
Antonio Squillace

Al-Li alloys are characterized by a strong anisotropy in mechanical properties and microstructure with respect to the rolling direction. Plates of 2198 Al-Li alloy were friction stir welded by employing maximum rotation speed: 1000 rev/min and welding speed of 80 mm/min, both in parallel and orthogonal directions with respect to the rolling one. The joints mechanical properties were evaluated by means of tensile tests at room temperature. In addition, fatigue tests performed with a resonant electro-mechanical testing machine under constant amplitude control up to 250 Hz loading, were conducted in axial control mode with R(σmin/σmax)=0.33, for all the welding and rotating speed conditions. The fatigue crack propagation experiments were performed by employing single edge notched specimens.With the aim to characterize the weld performances, both the microstructure evolution at jointed cross sections, related to the welding variables, and the fractured surfaces were respectively analyzed by means of optical and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document