Machining of CVD diamond film by RIE, Laser Ablation and Thermo-chemical Polishing(Ultra-precision machining)

Author(s):  
C.L. Chao ◽  
W.C. Chou ◽  
K.J. Ma ◽  
T.T. Chen ◽  
Y.M. Liu ◽  
...  
2012 ◽  
Vol 497 ◽  
pp. 185-189
Author(s):  
Li Zhang ◽  
Shao Jie Ding ◽  
Dong Hui Wen ◽  
Zhen Hao Xu ◽  
Shi Ming Ji

CVD diamond has become the mainstream trend for the development of diamond. Its ultra precision machining is one of the key technologies for expanding the application of CVD diamond film. The efficient polishing method is studied, called accelerant polishing technology, which can lower the activation energy needed in diamond graphitization by the accelerant action of transition metal. It accelerates reaction rates of graphitization and promotes the implementation of diamond’s removal mechanism. Experimentation results indicate that the polishing method is one new type of precision polishing technology with low cost and high efficiency.


2005 ◽  
Author(s):  
Choung-Lii Chao ◽  
W. C. Chou ◽  
Kung-Jen Ma ◽  
Ta-Tung Chen ◽  
Y. M. Liu ◽  
...  

Author(s):  
Wen Chen Chou ◽  
Choung Lii Chao ◽  
Hsi Hsin Chien ◽  
Kung Jeng Ma ◽  
Hung Yi Lin

2010 ◽  
Vol 135 ◽  
pp. 271-276
Author(s):  
Shu Tao Huang ◽  
Li Zhou ◽  
Li Fu Xu

Super-high speed polishing of diamond film is a newly proposed method due to its outstanding features such as low cost and simple apparatus. The interface temperature rise is due to the friction force and the relative sliding velocity between the CVD diamond film and the polishing metal plate surface. In this paper, the interface temperature rise in super-high speed polishing of CVD diamond film was investigated by using the single-point temperature measurement method. Additionally, the influence of polishing plate material on the characteristics of super-high speed polishing has been studied. The results showed that cast iron is not suitable for super-high polishing, while both 0Cr18Ni9 stainless steel and pure titanium can be used for the super-high polishing of CVD diamond film. The quality and efficiency of polishing with 0Cr18Ni9 stainless steel plate is much higher than those of pure titanium, and the material removal rate could reach to 36-51 m/h when the polishing speed and pressure are 100 m/s and 0.17-0.31 MPa, respectively.


1996 ◽  
Vol 47 (7) ◽  
pp. 611-615
Author(s):  
Hiroyuki TANAKA ◽  
Toshiaki TANAKA ◽  
Hideaki SOHMA ◽  
Masato YOSHIDA ◽  
Akira SAKAI ◽  
...  

2005 ◽  
Vol 71 (12) ◽  
pp. 1541-1547
Author(s):  
Tsuyoshi YOKOSAWA ◽  
Jun-ichiro TAKAGI ◽  
Seiji KATAOKA

Sign in / Sign up

Export Citation Format

Share Document