1601 Fabrication of Complex Shape Products Made of Binder-free Green Composite using Bamboo Fibers Extracted with a Machining Center

Author(s):  
Yusuke NAKAMURA ◽  
Minh HUYNH ◽  
Keiji OGAWA ◽  
Toshiki HIROGAKI ◽  
Eichi AOYAMA ◽  
...  
2010 ◽  
Vol 447-448 ◽  
pp. 760-764 ◽  
Author(s):  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Mitsuaki Taniguchi ◽  
Sachiko Ogawa

Bamboo grows faster than other renewable natural materials. Bamboo fiber, in particular, has attracted attention as an environmentally superior material. Therefore, we proposed a sustainable manufacturing system using bamboo. An extraction method of bamboo fibers end-milled using a machining center with in-situ measurement is proposed. Bamboo fibers with high precision shape are efficiently acquired. In the present report, we propose the fabrication of binder-free composite by a hot press forming method that only uses bamboo fibers extracted by a machining center. We experimentally demonstrated various hot press forming conditions and achieved proper forming conditions to optimize the forming process. We also made various three-dimensional shapes considering the practical applications of the formed binder-free bamboo fiber moldings.


Author(s):  
Kota Inoue ◽  
Antoine Bigeard ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
...  

Research is currently ongoing for composite materials using natural fiber with a small burden on the environment. We have been focusing on bamboo because of its fast growth, renewability, flexibility, low cost, and high specific strength. We previously proposed a novel hot press fabrication method for binder-free green composite products made from bamboo fibers extracted by end-milling with a machining center. We can use this method to form three-dimensionally shaped products, especially hemispherical shells, by using two kinds of dies. However, this method is complex and takes longer than one-step hot press forming. In the present report, we propose a new method that uses bamboo powder with a particle size of less than 500 μm. Our new method uses one-step hot press forming and is quicker than the previous method at making a hemispherical shell shape. The new method was successfully used to manufacture hemispherical shell-shape products.


2020 ◽  
Vol 2020 (0) ◽  
pp. S14305
Author(s):  
Shouq ALANSARI ◽  
Daigo TAUCHI ◽  
Hiromichi NOBE ◽  
Toshiki HIROGAKI ◽  
Eichi AOYAMA

2014 ◽  
Vol 625 ◽  
pp. 355-359
Author(s):  
Shinya Imura ◽  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Bamboo grows faster than other renewable natural materials. Bamboo fiber, in particular, has attracted attention as an environmentally superior material. Therefore, we propose a sustainable manufacturing system using bamboo. A method is also proposed for extracting bamboo fibers end-milled using a machining center with in-situ measurement. Bamboo fibers with highly precise shapes are efficiently acquired. Previously, we proposed the fabrication of a binder-free composite by a hot press forming method that only uses bamboo fibers extracted by a machining center. We experimentally demonstrated various hot press forming conditions and achieved proper ones to optimize the forming process. However, we have not yet constructed a method to obtain the best fiber extracting and molding conditions considering both its efficiency and performance. Therefore, in this report, we investigate the influence of the length of used bamboo fiber on the characteristics of the molded products, as its length deeply affects the extracting efficiency and focuses on a degradable plastic as a standard of molded product strength.


2009 ◽  
Vol 40 (7) ◽  
pp. 607-612 ◽  
Author(s):  
Hiroyuki Kinoshita ◽  
Koichi Kaizu ◽  
Miki Fukuda ◽  
Hitoo Tokunaga ◽  
Keisuke Koga ◽  
...  

2020 ◽  
Vol 14 (2) ◽  
pp. 280-293
Author(s):  
Tetsuya Kawabata ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Hiromichi Nobe ◽  
◽  
...  

Plastic gears are light and can be used without any lubricant, but they have low strength and an adverse effect on the environment. Therefore, a new gear that maintains these advantages while mitigating the disadvantages has been proposed. The development of sustainable and reproducible natural materials is desired to address these environmental problems. Therefore, in this study, a method was devised to extract high-quality and precise bamboo fibers using a machining center. Then, the hot press method was used to produce a novel spur gear made from only bamboo fibers, which is a green and organic machine element with a complicated shape. The present paper describes the characteristics of the proposed bamboo fiber gears, considering experimental results, including the hot press molding conditions, and the influence of fiber length on tooth bending strength, root strain, and vibration due to meshing teeth.


Author(s):  
Tetsuya Kawabata ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Masao Nakagawa ◽  
Hiromichi Nobe

Abstract Metal gears can transmit large torque. The disadvantages associated with metal gears are the noise produced and necessity of lubricants. Plastic gears are advantageous because they are lightweight and can be used without lubricants. However, plastic gears have relatively low strengths and damaging environmental effects. We propose the development of a new type of gear that overcomes the disadvantages associated with metal and plastic gears whilst maintaining their advantages. To address environmental issues within manufacturing, it is particularly important to utilize sustainable and reproducible natural materials. Therefore, we devised a method for extracting high-quality and high-precision bamboo fibers using a machining center. Bamboo bevel gears, which are complex-shaped mechanical elements, were manufactured using the hot-pressing method. This paper outlines the performance and characteristics of the molded bamboo bevel gears. We investigated the degree of burning and strength of the bamboo fiber gears at various cutting and forming conditions. The results demonstrated that the degree of burning (black color) did not affect the gear strength, and the gear strength was at a maximum when the fiber length was 50% of the module size.


Sign in / Sign up

Export Citation Format

Share Document