Applications of Laser to Structure, Structural Dynamics and Materials Research

1979 ◽  
Vol 82 (733) ◽  
pp. 1320-1325
Author(s):  
Seinosuke SUMI
Author(s):  
Charles W. Allen

High voltage TEMs were introduced commercially thirty years ago, with the installations of 500 kV Hitachi instruments at the Universities of Nogoya and Tokyo. Since that time a total of 51 commercial instruments, having maximum accelerating potentials of 0.5-3.5 MV, have been delivered. Prices have gone from about a dollar per volt for the early instruments to roughly twenty dollars per volt today, which is not so unreasonable considerinp inflation and vastly improved electronics and other improvements. The most expensive HVEM (the 3.5 MV instrument at Osaka University) cost about 5 percent of the construction cost of the USA's latest synchrotron.Table 1 briefly traces the development of HVEM in this country for the materials sciences. There are now only three available instruments at two sites: the 1.2 MeV HVEM at Argonne National Lab, and 1.0 and 1.5 MeV instruments at Lawrence Berkeley National Lab. Fortunately, both sites are user facilities funded by DOE for the materials research community.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2020 ◽  
Vol 7 (2) ◽  
pp. 72-78
Author(s):  
Adnan Al Farisi ◽  
Yopi Handoyo ◽  
Taufiqur Rokhman

The One of alternative energy that is environmentally friendly is by untilize water energy and turn it into a Microhydro power plant. Microhydro power plant usually made from utilize the waterfall with the head fell. While utilization for streams with a head small drop is not optimal yet. This is a reference to doing research on harnessing the flow of a river that has a value of head low between 0.7 m – 1.4 m with turning it into a Vortex flow (vortex). The purpose of this research is to know  the effect variation number of blade on power and efficiency in the vortex turbine. This research uses experimental methods to find current, voltage, torque and rpm using a reading instrument. The materials research vortex turbine used 6 blade, 8 blade and 10 blade with flat plate. The result showed the highest efficiency is 29,93 % with produce turbine power is 19,58 W, generated on turbine with variation 10 blade with load 3,315 kg and the capacity of water 10,14 l/s. Followed with an efficiency 24,17% and produce turbine power is 15,81 W, generated on turbine with the variation 8 blade with load 3,315 kg and the capacity of water is 10,14 l/s. The the lowest turbine efficiency 22,32% with produce tuebine power 14,60 W, generated on turbine with the variation 6 blade with load 3,315 kg, the capacity of water is 10,14 l/s.


2018 ◽  
Vol 190 (02) ◽  
pp. 113-136
Author(s):  
Sergei A. Aseyev ◽  
A.S. Akhmanov ◽  
G.V. Girichev ◽  
Anatoly A. Ischenko ◽  
Igor V. Kochikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document