Trends of the Developments on Wind Turbine Generators on the Large Scale Systems(Minor Special Issue on the Alternative Energy Technologies)

1981 ◽  
Vol 84 (757) ◽  
pp. 1375-1379
Author(s):  
Toyoki ORITA
Author(s):  
Austin C. Hayes ◽  
Gregory L. Whiting

Abstract Additive manufacturing enables the production of complex geometries extremely difficult to create with conventional subtractive methods. While good at producing complex parts, its limitations can be seen through its penetration into everyday manufacturing markets. Throughput limitations, poor surface roughness, limited material selection, and repeatability concerns hinder additive manufacturing from revolutionizing all but the low-volume, high-value markets. This work characterizes combining powder-binder jetting with traditional casting techniques to create large, complex metal parts. Specifically, we extend this technology to wind turbine generators and provide initial feasibility of producing complex direct-drive generator rotor and stator designs. In this process, thermal inkjet printer heads selectively deposit binder on hydroperm casting powder. This powder is selectively solidified and baked to remove moisture before being cast through traditional methods. This work identifies a scalable manufacturing process to print large-scale wind turbine direct drive generators. As direct-drive generators are substantially larger than their synchronous counterparts, a printing process must be able to be scaled for a 2–5 MW 2–6m machine. For this study, research on the powder, binder, and printing parameters is conducted and evaluated for scalability.


2013 ◽  
Vol 724-725 ◽  
pp. 485-490 ◽  
Author(s):  
Ling Zhou ◽  
Xiao Fang Song ◽  
Hai Bo Xu ◽  
Kang Chang ◽  
Ji Chen Li ◽  
...  

This paper analyses the mechanism of large scale cascading trip-off failures of wind turbine generators in China, focuses on the reasons of trip-off caused by overvoltage. It analyses the model of Doubly Fed Induction Generation (DFIG) and builds a model of a wind farm that is composed of Doubly Fed Induction generators in DIgSILENT. The wind farm A with capacity of 175MW and wind farm B with capacity of 175MW is accessed to the nine bus system. The simulation reproduces the processes of the cascading trip-off of wind turbine generators caused by undervoltage and overvoltage. The trip-off caused by undervoltage is due to the lack of Low Voltage Ride Through (LVRT). And that the capacitive reactive power compensation device is not timely removed leads to a large surplus of reactive power, then the voltage rises, so the wind turbine generators trip off because of overvoltage. By setting the contrast scenario, the result shows that if capacitive reactive power compensation device is promptly removed after the loss of a large amount of active power, the wind turbine generators will not trip off because of overvoltage.


Sign in / Sign up

Export Citation Format

Share Document