G101095 Experimental Study on a Vibration Isolator Using the Post-Buckled L-shaped Beam Structure

2013 ◽  
Vol 2013 (0) ◽  
pp. _G101095-1-_G101095-4
Author(s):  
Yumiko TSUJI ◽  
Takumi SASAKI
2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Karthik Yerrapragada ◽  
Armaghan Salehian

The experimental study and model validations for the coupled dynamics of a cable-harnessed beam structure are presented. The system under consideration consists of multiple pretensioned cables attached along the length of the host beam structure positioned at an offset distance from the beam centerline. Analytical model presented by the coupled partial differential equations (PDEs) for various coordinates of vibrations is found, and the displacement frequency response functions (FRFs) obtained for both Euler–Bernoulli and Timoshenko-based models are compared to those from the experiments for validation. The results are shown to be in very good agreement with the experiments.


2011 ◽  
Vol 255-260 ◽  
pp. 2308-2312
Author(s):  
Yong Qi ◽  
Ci Mian Zhu ◽  
Shu Sheng Zhong ◽  
Fang Wang ◽  
Yang Xiang

This paper deals with an experimental study on the seismic performance of haunched transfer beam structures with varied ratio of section height to thickness of short-leg shearwall (RHT). Based on the seismic tests of three 1:3-scaled specimens under low-frequency cyclic lateral load with constant vertical actions, the failure pattern, the hysteresis curves, the skeleton curves, the energy dissipation capacity, and the stiffness degradation laws of haunched transfer beam structures are investigated. The effects of different RHT (i.e., 5, 6 and 7) on the seismic performance of haunched transfer beam structures are emphasized and analyzed in detail. It is concluded that the rigidity of the structure is noticeable enhanced, the endogen force becomes more evenly distributed and the bearing is more rational with an increase of the RHT; the rationally designed haunched transfer beam structure has a good seismic behavior.


Sign in / Sign up

Export Citation Format

Share Document