Temperature Distribution Measurement of Melted Plastic by Using Electrical Capacitance Tomography

2016 ◽  
Vol 2016 (0) ◽  
pp. J0510201
Author(s):  
Yusuke HIROSE ◽  
Kazuaki HATA ◽  
Masahiro TAKEI
Author(s):  
Yusuke Hirose ◽  
Kazuaki Hata ◽  
Sapkota Achyut ◽  
Masahiro Takei

This study has launched a concept to measure real time two-dimensional temperature distribution non-invasively by a combination of electrical capacitance tomography (ECT) technique and a permittivity-temperature equation for plastic pellets. The concept has two steps which are the relative permittivity calculation from the measured capacitance among the many electrodes by ECT technique, and the temperature distribution calculation from the relative permittivity distribution by permittivity-temperature equation. ECT sensor with 12-electrode is designed to measure and visualize the cross sectional temperature distribution during polymethyl methacrylate (PMMA) pellets cooling process. The images of the normalized relative permittivity distribution are successfully reconstructed at every time step during the process. The images indicate that the normalized relative permittivity of PMMA pellets is decreased as the temperature is decreased.


2014 ◽  
Vol 35 (4) ◽  
pp. 397-408 ◽  
Author(s):  
Jan Porzuczek

Abstract The paper presents a review of current achievements in the Electrical Capacitance Tomography (ECT) in relation to its possible applications in the study of phenomena occurring in fluidised bed reactors. Reactors of that kind are being increasingly used in chemical engineering, energetics (fluidised bed boilers) or industrial dryers. However, not all phenomena in the fluidised bed have been thoroughly understood. This results in the need to explore and develop new research methods. Various aspects of ECT operation and data processing are described with their applicability in scientific research. The idea for investigation of temperature distribution in the fluidised bed, using multimodal tomography, is also introduced. Metrological requirements of process tomography such as sensitivity, resolution, and speed of data acquiring are noted.


Author(s):  
Yusuke Hirose ◽  
Kristian Basario ◽  
Tong Zhao ◽  
Masahiro Takei

This study has launched a concept to measure real time two-dimensional temperature distribution non-invasively by a combination of electrical capacitance tomography (ECT) technique and Debye equation. The concept has two steps which are the relative permittivity calculation from the measured capacitance among the many electrodes by ECT technique, and the temperature distribution calculation from the relative permittivity distribution by Debye equation. ECT sensor with 8 or 12-electrode is designed to measure and visualize the cross sectional temperature distribution in heating water as a basic experiment and melting polycarbonate pellets as a main experiment. Consequently, it is found that the water capacitance is changed by 1.14×10−6F as every 1.0 degree Celsius water temperature change. Moreover, the images of the temperature distribution from the relative permittivity distribution are reconstructed at every time step during the polycarbonate melting process. The non-invasive temperature values by a combination of ECT technique and Debye equation were compared with the invasive temperature values by the thermocouples. The non-invasive values have a good agreement with the invasive values by approximate 5%.


Sign in / Sign up

Export Citation Format

Share Document