Phase-averaging Analysis on the Wake of the Fluttering Multi-articulated Flat Plate in the Mean Flow

2017 ◽  
Vol 2017 (0) ◽  
pp. S0520504
Author(s):  
Masaki YAMAGISHI ◽  
Masaki KOBAYASHI ◽  
Mizuki KOBAYASHI ◽  
Yoshitaka KAWADA
Author(s):  
Masaki Yamagishi ◽  
Tomoko Togano ◽  
Shinichi Tashiro

The vortex structures in a separated region are generated by the motion of the separated shear layer caused by the introduction of periodic fluctuation. The main cause of the motion of the separated shear layer is the external fluctuation with the characteristic frequency. In order to investigate the principal motion of the velocity field, phase averaging was conducted to the velocity signals obtained by single hot-wire measurement. In phase averaging, wavelet analysis was applied to obtain the dominant frequency and the characteristic phase in the fluctuation. The profiles and the contours of the phase-averaged velocity could be found and discussed. The profiles vary dynamically at each phase and show the periodic motion of the shear layer. The separated shear layer flutters with the external fluctuation in the mean flow. If the suitable frequency is selected in the external fluctuation, the separated region disappears in almost all each phases owing to the depression of the shear layer near the wall.


1976 ◽  
Vol 77 (3) ◽  
pp. 473-497 ◽  
Author(s):  
L. J. S. Bradbury

This paper describes an investigation into the response of both the pulsed-wire anemometer and the hot-wire anemometer in a highly turbulent flow. The first part of the paper is concerned with a theoretical study of some aspects of the response of these instruments in a highly turbulent flow. It is shown that, under normal operating conditions, the pulsed-wire anemometer should give mean velocity and longitudinal turbulent intensity estimates to an accuracy of better than 10% without any restriction on turbulence level. However, to attain this accuracy in measurements of turbulent intensities normal to the mean flow direction, there is a lower limit on the turbulent intensity of about 50%. An analysis is then carried out of the behaviour of the hot-wire anemometer in a highly turbulent flow. It is found that the large errors that are known to develop are very sensitive to the precise structure of the turbulence, so that even qualitative use of hot-wire data in such flows is not feasible. Some brief comments on the possibility of improving the accuracy of the hot-wire anemometer are then given.The second half of the paper describes some comparative measurements in the highly turbulent flow immediately downstream of a normal flat plate. It is shown that, although it is not possible to interpret the hot-wire results on their own, it is possible to calculate the hot-wire response with a surprising degree of accuracy using the results from the pulsed-wire anemometer. This provides a rather indirect but none the less welcome check on the accuracy of the pulsed-wire results, which, in this very highly turbulent flow, have a certain interest in their own right.


1970 ◽  
Vol 43 (4) ◽  
pp. 801-811 ◽  
Author(s):  
R. Jordinson

Numerical space-amplified solutions of the Orr-Sommerfeld equation for the case of a boundary layer on a flat plate have been calculated for a wide range of values of frequency and Reynolds number. The mean flow is assumed to be parallel and given by the appropriate component of the Blasius solution. The results are presented in a form suitable for comparison with experiment and are also compared with calculations of earlier authors.


1970 ◽  
Vol 40 (2) ◽  
pp. 315-341 ◽  
Author(s):  
D. Ru-Sue Ko ◽  
T. Kubota ◽  
L. Lees

An integral method is used to investigate the interaction between a two-dimensional, single frequency finite amplitude disturbance in a laminar, incompressible wake behind a flat plate at zero incidence. The mean flow is assumed to be a non-parallel flow characterized by a few shape parameters. Distribution of the fluctuation across the wake is obtained as functions of those mean flow parameters by solving the inviscid Rayleigh equation using the local mean flow. The variations of the fluctuation amplitude and of the shape parameters for the mean flow are then obtained by solving a set of ordinary differential equations derived from the momentum and energy integral equations. The interaction between the mean flow and the fluctuation through Reynolds stresses plays an important role in the present formulation, and the theoretical results show good agreement with the measurements of Sato & Kuriki (1961).


2000 ◽  
Vol 422 ◽  
pp. 319-346 ◽  
Author(s):  
DAVID B. DE GRAAFF ◽  
JOHN K. EATON

Despite extensive study, there remain significant questions about the Reynolds-number scaling of the zero-pressure-gradient flat-plate turbulent boundary layer. While the mean flow is generally accepted to follow the law of the wall, there is little consensus about the scaling of the Reynolds normal stresses, except that there are Reynolds-number effects even very close to the wall. Using a low-speed, high-Reynolds-number facility and a high-resolution laser-Doppler anemometer, we have measured Reynolds stresses for a flat-plate turbulent boundary layer from Reθ = 1430 to 31 000. Profiles of u′2, v′2, and u′v′ show reasonably good collapse with Reynolds number: u′2 in a new scaling, and v′2 and u′v′ in classic inner scaling. The log law provides a reasonably accurate universal profile for the mean velocity in the inner region.


1997 ◽  
Vol 353 ◽  
pp. 205-220 ◽  
Author(s):  
P. W. HAMMERTON ◽  
E. J. KERSCHEN

In Hammerton & Kerschen (1996), the effect of the nose radius of a body on boundary-layer receptivity was analysed for the case of a symmetric mean flow past a two-dimensional body with a parabolic leading edge. A low-Mach-number two-dimensional flow was considered. The radius of curvature of the leading edge, rn, enters the theory through a Strouhal number, S=ωrn/U, where ω is the frequency of the unsteady free-stream disturbance and U is the mean flow speed. Numerical results revealed that the variation of receptivity for small S was very different for free-stream acoustic waves propagating parallel to the mean flow and those free-stream waves propagating at an angle to the mean flow. In this paper the small-S asymptotic theory is presented. For free-stream acoustic waves propagating parallel to the symmetric mean flow, the receptivity is found to vary linearly with S, giving a small increase in the amplitude of the receptivity coefficient for small S compared to the flat-plate value. In contrast, for oblique free-stream acoustic waves, the receptivity varies with S1/2, leading to a sharp decrease in the amplitude of the receptivity coefficient relative to the flat-plate value. Comparison of the asymptotic theory with numerical results obtained in the earlier paper confirms the asymptotic results but reveals that the numerical results diverge from the asymptotic result for unexpectedly small values of S.


2010 ◽  
Vol 660 ◽  
pp. 37-54 ◽  
Author(s):  
OLAF MARXEN ◽  
ULRICH RIST

The mutual interaction of laminar–turbulent transition and mean flow evolution is studied in a pressure-induced laminar separation bubble on a flat plate. The flat-plate boundary layer is subjected to a sufficiently strong adverse pressure gradient that a separation bubble develops. Upstream of the bubble a small-amplitude disturbance is introduced which causes transition. Downstream of transition, the mean flow strongly changes and, due to viscous–inviscid interaction, the overall pressure distribution is changed as well. As a consequence, the mean flow also changes upstream of the transition location. The difference in the mean flow between the forced and the unforced flows is denoted the mean flow deformation. Two different effects are caused by the mean flow deformation in the upstream, laminar part: a reduction of the size of the separation region and a stabilization of the flow with respect to small, linear perturbations. By carrying out numerical simulations based on the original base flow and the time-averaged deformed base flow, we are able to distinguish between direct and indirect nonlinear effects. Direct effects are caused by the quadratic nonlinearity of the Navier–Stokes equations, are associated with the generation of higher harmonics and are predominantly local. In contrast, the stabilization of the flow is an indirect effect, because it is independent of the Reynolds stress terms in the laminar region and is solely governed by the non-local alteration of the mean flow via the pressure.


1990 ◽  
Vol 112 (1) ◽  
pp. 124-129 ◽  
Author(s):  
N. Ramachandran ◽  
B. F. Armaly ◽  
T. S. Chen

Turbulent boundary layer flow adjacent to an isothermal horizontal flat plate is analyzed for the mixed convection regime. Results are presented for both air (Pr = 0.7) and water (Pr= 7) flowing above the heated plate at various velocities over a range of temperature differences between the plate and the free stream. Closure of the governing, time-averaged, turbulent equations for the mean flow quantities is attained by using a modified k–ε model that accounts for the influence of buoyancy-induced forces on the turbulent quantities. It is found that the local surface heat flux increases with increasing buoyancy force parameter. The numerical results are in qualitative agreement with available experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document