The Effect of Cyclic Hydrostatic Pressure during Synovial Joint Development by Using in vitro Tissue Culture Model

2018 ◽  
Vol 2018 (0) ◽  
pp. S0210105
Author(s):  
Chang Minki ◽  
Ushida Takashi ◽  
Furukawa Katsuko
Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 474
Author(s):  
Andreas Weber ◽  
Melissa Pfaff ◽  
Friederike Schöttler ◽  
Vera Schmidt ◽  
Artur Lichtenberg ◽  
...  

The hallmarks of calcific aortic valve disease (CAVD), an active and regulated process involving the creation of calcium nodules, lipoprotein accumulation, and chronic inflammation, are the significant changes that occur in the composition, organization, and mechanical properties of the extracellular matrix (ECM) of the aortic valve (AV). Most research regarding CAVD is based on experiments using two-dimensional (2D) cell culture or artificially created three-dimensional (3D) environments of valvular interstitial cells (VICs). Because the valvular ECM has a powerful influence in regulating pathological events, we developed an in vitro AV tissue culture model, which is more closely able to mimic natural conditions to study cellular responses underlying CAVD. AV leaflets, isolated from the hearts of 6–8-month-old sheep, were fixed with needles on silicon rubber rings to achieve passive tension and treated in vitro under pro-degenerative and pro-calcifying conditions. The degeneration of AV leaflets progressed over time, commencing with the first visible calcified domains after 14 d and winding up with the distinct formation of calcium nodules, heightened stiffness, and clear disruption of the ECM after 56 d. Both the expression of pro-degenerative genes and the myofibroblastic differentiation of VICs were altered in AV leaflets compared to that in VIC cultures. In this study, we have established an easily applicable, reproducible, and cost-effective in vitro AV tissue culture model to study pathological mechanisms underlying CAVD. The valvular ECM and realistic VIC–VEC interactions mimic natural conditions more closely than VIC cultures or 3D environments. The application of various culture conditions enables the examination of different pathological mechanisms underlying CAVD and could lead to a better understanding of the molecular mechanisms that lead to VIC degeneration and AS. Our model provides a valuable tool to study the complex pathobiology of CAVD and can be used to identify potential therapeutic targets for slowing disease progression.


Author(s):  
Parviz Ranjbarvan ◽  
Fatemeh Khazaei ◽  
Farzaneh Chobsaz ◽  
Mozafar Khazaei

Introduction: Raloxifene (Ral) is the oldest SERM (selective oestrogen receptor modulators) for treatment of breast cancer and osteoporosis. Its oestrogen-modulating effects have been shown in breast and uterus. Since there is little available data on direct Ral effect on the human endometrium, the aim of present study was to investigate the Ral effect on the growth and angiogenesis of the human endometrium of healthy and endometriosis subjects in an in vitro three-dimensional (3D) tissue culture model. Material and methods: Endometrial biopsies from healthy ( n = 9) and endometriosis ( n = 7) patients (endometriotic) were taken and were cut into 1 × 1 mm fragments and implanted between two layers of fibrin jell made by fibrinogen solution (3 mg/ml in medium 199+thrombin). Tissue cultures were performed in 24-wel culture plates. Each biopsy was divided into control wells which received M199 supplemented with FBS (5%) and experimental wells which received same media containing one of raloxifene doses (0.1, 1 and 10 μM). Endometrial tissues were photographed at the beginning and the end of the study period (21 days). Tissue growth and angiogenesis were determined by a scoring system. Results: In control (0), 0.1, 1 and 10 μM Ral, the growth score of normal human endometrial tissues were 1.99, 1.72, 1.53 and 1.12 ( p = 0.02) and angiogenesis percent were 29.6%, 31.28%, 33% and 11.5%. The Growth scores of the endometriotic endometrium were 1.92, 1.82, 1.92 and 1.1 ( p = 0.008) and angiogenesis percent were 36.6%, 16.6%, 44% and 12.5% respectively. Conclusion: Raloxifene showed a different dose dependent effect on endometrial and endometriotic tissue.


2019 ◽  
Vol 34 (8) ◽  
pp. 1575-1582
Author(s):  
Jihad A. M. Alzyoud ◽  
Naomi S. Joyce ◽  
Ryan D. Woodward ◽  
Ilyas M. Khan ◽  
Sarah G. Rees

Author(s):  
Nagat Areid ◽  
Jaana Willberg ◽  
Ilkka Kangasniemi ◽  
Timo O. Närhi

AbstractIn vitro studies of implant-tissue attachment are primarily based on two-dimensional cell culture models, which fail to replicate the three-dimensional native human oral mucosal tissue completely. Thus, the present study aimed to describe a novel tissue culture model using pig mandibular block including alveolar bone and gingival soft tissues to evaluate the tissue attachment to titanium implant provided with hydrothermally induced TiO2 coating. Tissue attachment on TiO2 coated and non-coated implants were compared. Ti-6Al-4V alloy posts were used to function as implants that were inserted in five pig mandibles. Implants were delivered with two different surface treatments, non-coated (NC) titanium and hydrothermal induced TiO2 coated surfaces (HT). The tissue-implant specimens were cultured at an air/liquid interface for 7 and 14 days. The tissue-implant interface was analyzed by histological and immunohistochemical stainings. The microscopic evaluation suggests that pig tissue explants established soft and hard tissue attachment to both implant surfaces. The epithelial cells appeared to attach to the coated implant. The epithelium adjacent to the implant abutment starts to change its phenotype during the early days of the healing process. New bone formation was seen within small pieces of bone in close contact with the coated implant. In conclusion, this in vitro model maintains the viability of pig tissue and allows histologically and immunohistochemically evaluate the tissue-implant interface. HT-induced TiO2 coating seems to have a favorable tissue response. Moreover, this organotypic tissue culture model is applicable for further studies with quantitative parameters to evaluate adhesion molecules present at the implant-tissue interface.


2009 ◽  
Vol 34 (5) ◽  
pp. 643-650 ◽  
Author(s):  
H. OMAE ◽  
C. ZHAO ◽  
Y.-L. SUN ◽  
M. E. ZOBITZ ◽  
S. L. MORAN ◽  
...  

The purpose of this study was to assess tendon metabolism and suture pull-out strength after simple tendon suture in a tissue culture model. One hundred and twelve flexor digitorum profundus tendons from 28 dogs were cultured for 7, 14, or 21 days with or without a static tensile load. In both groups increased levels of matrix metalloproteinase (MMP) mRNA was noted. Suture pull-out strength did not decrease during tissue culture. While the presence of a static load had no effect on the pull-out strength, it did affect MMP mRNA expression. This tissue culture model could be useful in studying the effect of factors on the tendon-suture interface.


Sign in / Sign up

Export Citation Format

Share Document