Rotating Bending Fatigue Property and Fractography for High Strength Steels and Carbon Steel in Ultra-Wide Life Region

2002 ◽  
Vol 2002.2 (0) ◽  
pp. 373-374
Author(s):  
Mitsuhiro TAKEDA ◽  
Tatsuo SAKAI ◽  
Noriyasu OGUMA
2007 ◽  
Vol 344 ◽  
pp. 87-96 ◽  
Author(s):  
M. Barletta ◽  
F. Lambiase ◽  
Vincenzo Tagliaferri

This paper deals with a definition of a relatively novel technique to improve the fatigue behavior of high strength aluminum alloys, namely, Fluidized Bed Peening (FBP). Fatigue samples made from AA 6082 T6 alloy were chosen according to ASTM regulation about rotating bending fatigue test and, subsequently, treated by varying FBP operational parameters and fatigue testing conditions. First, a full factorial experimental plan was performed to assess the trend of number of cycles to rupture of fatigue samples varying among several experimental levels the factors peening time and maximum amplitude of alternating stress applied to fatigue samples during rotating bending fatigue tests. Second, design of experiment (DOE) technique was used to analyze the influence of FBP operational parameters on fatigue life of AA 6082 T6 alloy. Finally, ruptures of FB treated samples and untreated samples were discussed in order to evaluate the influence of operational parameters on the effectiveness of FBP process and to understand the leading process mechanisms. At any rate, the fatigue behavior of processed components was found to be significantly improved, thereby proving the suitability of FBP process as alternative mechanical technique to enhance fatigue life of components made from high strength aluminum alloy.


2004 ◽  
Vol 261-263 ◽  
pp. 1153-1158 ◽  
Author(s):  
You Tang Li ◽  
Ping Ma ◽  
Chang Feng Yan ◽  
Fu Yuan Lang

Safety designs and fracture designs are the two important fields of crack theory. The fracture problems of middle carbon steel under extra-low cycle rotating bending fatigue loading are studied in this paper. The experiments have been made in special rotating bending fatigue fracture machine designed by us. Several problems, the relations of the cycle times of fracture and the strain amplitude near notch tip to the deflection, the effects of depth and tip radius of notch to the cycle times of fracture, are discussed through the experiments. The mathematical expression of fracture toughness to the cycle times of fracture is obtained. The suitable parameters of rotating bending fatigue fracture model for middle-carbon steel in extra-low cycle times has been proposed.


2016 ◽  
Vol 849 ◽  
pp. 347-352
Author(s):  
Xu Wang ◽  
Si Qing Li ◽  
Jing Nan Liu

The rotating bending fatigue properties of Ti65 titanium alloy blisk forging was studied in the present investigation. The smooth and notched specimens were prepared to test the fatigue properties at room temperature and 650°C. Meanwhile, the influences on rotating bending fatigue of temperature and type were analyzed. Furthermore, the fractural morphology was observed through scanning electron microscopy. The results showed that the medium fatigue strength of Ti65 titanium alloy decreased at 650°C compared with that at room temperature, and the fatigue strength of notched specimens indicated the same significant declination at different temperatures compared with smooth specimens. At room temperature the medium fatigue strength of smooth and notched are 473MPa and 173MPa, respectively, and the fatigue notch sensitive coefficient was 0.87. At 650°C the medium fatigue strength of smooth and notched specimens are 427MPa and 168MPa, where the fatigue notch sensitive coefficient was 0.78.


Sign in / Sign up

Export Citation Format

Share Document