Three-Dimensional Numerical Analysis of Gas-Particle Two-Phase Round Jet

2003 ◽  
Vol 2003.2 (0) ◽  
pp. 133-134
Author(s):  
Tomomi UCHIYAMA ◽  
Akihito FUKASE
2015 ◽  
Vol 741 ◽  
pp. 531-535
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents the numerical analysis of erosive wear on the guide vanes of a Francis turbine using CFD code. The 3-D turbulent particulate-liquid two-phase flow equations are employed in this study. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that the volume fraction of sand at the top of the guide vanes is higher than others and the maximum of volume fraction of sand is at same location with the maximum of sand erosion rate density. The erosive wear is more serious at the top of the guide vanes.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Ketan Atulkumar Ganatra ◽  
Dushyant Singh

The numerical analysis for the round jet impingement over a circular cylinder has been carried out. The v2f turbulence model is used for the numerical analysis and compared with the two equation turbulence models from the fluid flow and the heat transfer point of view. Further, the numerical results for the heat transfer with original and modified v2f turbulence model are compared with the experimental results. The nozzle is placed orthogonally to the target surface (heated cylindrical surface). The flow is assumed as the steady, incompressible, three-dimensional and turbulent. The spacing between the nozzle exit and the target surface ranges from 4 to 15 times the nozzle diameter. The Reynolds number based on the nozzle diameter ranges from 23,000 to 38,800. From the heat transfer results, the modified v2f turbulence model is better as compared to the other turbulence models. The modified v2f turbulence model has the least error for the numerical Nusselt number at the stagnation point and wall jet region.


2014 ◽  
Vol 687-691 ◽  
pp. 4376-4381 ◽  
Author(s):  
Li Feng Zhu ◽  
Kai Wang ◽  
Huan Wu ◽  
Dong Xiu ◽  
Li Zhong Sun

Based on the solid - liquid two-coupling theory, Use abrasive medium viscosity-temperature characteristics related to the mathematical model, using solid - liquid two-phase solution method Mixture models and standards, turbulence model combining with common rail pipe hole as the research object, choose different initial temperatures and processing procedures, numerical analysis was carried out on the flow channel wall temperature and turbulent kinetic energy. Using numerical analysis software FLUENT Abrasive Flow Machining rail tube orifice structure was three-dimensional numerical analysis; obtain a steady-state pressure, dynamic pressure, velocity, turbulent kinetic energy image, to study Abrasive Flow Machining process provides a theoretical basis and technical support.


2005 ◽  
Vol 127 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Tomomi Uchiyama ◽  
Akihito Fukase

This paper proposes a three-dimensional vortex method for a gas-particle two-phase compound round jet. The method can take account of the interaction between the two phases by calculating the motion of particles and the behavior of gas vortex elements through the Lagrangian approach. In order to discuss the validity of the method, an air jet, loaded with small glass particles, issuing from a round nozzle into the co-flowing air stream is simulated. The simulation demonstrates that the air turbulence modulations due to the particles, such as the relaxation of velocity decay, the decrement of momentum diffusion in the radial direction at the fully developed region, and the reduction of turbulent intensity and Reynolds shear stress, are successfully captured by the method.


Sign in / Sign up

Export Citation Format

Share Document