Spike and Modal Stall Inception Patterns in a Variable-pitch Axial-flow Fan

2003 ◽  
Vol 2003.2 (0) ◽  
pp. 27-28
Author(s):  
Takahiro NISHIOKA ◽  
Shuuji KURODA ◽  
Tadashi KOZU
2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Tegegn Dejene Toge ◽  
A. M. Pradeep

The present paper is an attempt in understanding the stall inception mechanism in a low speed, contra rotating axial flow fan stage, using wavelet transforms. The rotors used in this study have relatively large tip gap (about 3% of the blade span) and aspect ratio of 3. The study was carried out near stall and at stall mass flow conditions for different speed ratios of rotor-2 to rotor-1. Unsteady pressure data from the casing wall mounted sensors are used to understand the stall inception mechanism. The wavelet transform clearly indicates that stall inception occurs mainly through long length scale disturbances for both rotors. It also reveals that short length disturbances occur simultaneously or intermittently in the case of rotor-1. The analysis shows the presence of a strong modal disturbance with 25–80% of the rotor frequency in the case of rotor-1 at the stall mass flow for all the speed combinations studied. The most interesting thing observed in the present study is that the frequency amplitude of the disturbance level is very small for both rotors.


2001 ◽  
Vol 124 (1) ◽  
pp. 280-283 ◽  
Author(s):  
Sandra Velarde-Sua´rez ◽  
Rafael Ballesteros-Tajadura ◽  
Carlos Santolaria-Morros ◽  
Eduardo Blanco-Marigorta

Variable pitch axial flow fans are widely used in industrial applications to satisfy variable operating conditions. The change of the blade pitch leads to a different rotor geometry and has a major influence on the unsteady operation of the machine. In this work, an experimental research on an axial flow fan with variable pitch blades has been carried out. First of all, the fan performance curves has been obtained. Then the flow field has been measured at ten radial locations both at the inlet and exit rotor plane using hot wire anemometry. Velocity components and total unsteadiness were determined and analyzed in order to characterize the influence of pitch blade and operating conditions on the flow structure.


Sign in / Sign up

Export Citation Format

Share Document