Slip of the Conical Involute Gears on Tooth Surface Fatigue

2004 ◽  
Vol 2004.4 (0) ◽  
pp. 203-204
Author(s):  
Fumihiko CHIBA
Author(s):  
Tatsuya Ohmachi ◽  
Koji Iizuka ◽  
Hidenori Komatsubara ◽  
Ken-ichi Mitome

Abstract The tooth surface fatigue strength of the conical involute gear is evaluated in this paper. Test gears are straight intersecting-axis conical gears. The material of the test gear is normalized steel. The power circulating testing machine is used in this experiment. The circulating torque is kept constant and the number of times of contact is 107. The tooth surface life is evaluated by the pitting area rate. The critical value of the circulating torque is found between 147 N·m and 157 N·m. For critical torque, the pitting area rate does not progress over 4%. The Hertzian contact stress of the test gear is calculated at the circulating torque. The contact stress should be evaluated in consideration of the wearing effects.


2006 ◽  
Vol 129 (9) ◽  
pp. 969-980 ◽  
Author(s):  
Stephen P. Radzevich

In this paper, a novel modified scheme and effective computer representation for design of a plunge shaving cutter is presented. The paper aims to develop a novel design of shaving cutter for plunge shaving of precision involute gears. The study is carried out on the premise of satisfaction of the fifth necessary condition of proper part surface generation (PSG) when designing the plunge shaving cutter. In the current study, the author’s earlier developed DG/K method of surface generation is used together with the principal elements of analytical mechanics of gears. (The DG/K method is based on fundamental results obtained in differential geometry of surfaces, and on kinematics of multi-parametric motion of a rigid body in the E3 space. The interested reader may wish to go for details to the monograph: Radzevich, S.P., Fundamentals of Surface Generation, Monograph, Kiev, Rastan, 2001, 592 pp., and to: Radzevich, S.P., Sculptured Surface Machining on Multi-Axis NC Machine, Monograph, Kiev, Vishcha Schola, 1991, 192 pp.) In the particular case under consideration, the method employs (a) an analytical description of the gear tooth surface to be machined, (b) configuration of the plunge shaving cutter relative to the involute gear, (c) analytical representation of the coordinate systems transformations, and (d) the fifth condition of proper PSG that is adapted to finishing of precision involute gears. The fifth condition of proper PSG is investigated in the paper. On the premise of the obtained results of the investigation, a novel design of plunge shaving cutter for finishing of precision involute gears is proposed. The developed novel design of plunge shaving cutter can be used on shaving machines available on the market, e.g. on Gleason’s new Genesis™ 130SV computer numerical control (CNC) shaving machine.


Author(s):  
J Hedlund ◽  
A Lehtovaara

Gear analysis is typically performed using calculation based on gear standards. Standards provide a good basis in gear geometry calculation for involute gears, but these are unsatisfactory for handling geometry deviations such as tooth flank modifications. The efficient utilization of finite-element calculation also requires the geometry generation to be parameterized. A parameterized numerical approach was developed to create discrete helical gear geometry and contact line by simulating the gear manufacturing, i.e. the hobbing process. This method is based on coordinate transformations and a wide set of numerical calculation points and their synchronization, which permits deviations from common involute geometry. As an example, the model is applied to protuberance tool profile and grinding with tip relief. A fairly low number of calculation points are needed to create tooth flank profiles where error is <1 μm.


Author(s):  
L Liu ◽  
Y H Huang

Involute helical gears mesh based on the intersections of involute helicoids. However, spiral involutes on the tooth surface do not participate in meshing directly. A new type of gear drive, the spiral involute gear drive, is proposed that works on the contact of spiral involutes. The generation of tooth profile is introduced in detail. Through relative-stagnation method, spiral involutes prove to have conjugation characteristics. To testify whether the transmission ratio of cylindrical spiral involute gears is constant, simulation is implemented in commercial codes ADAMS based on solid models of a pair of spiral involute gears. The computed results show that this novel gear drive can achieve a constant transmission ratio. Due to transmission with uniform velocity, cylindrical spiral involute gears can be used in transmission between intersecting axes. Milling and grinding apply to manufacturing of spiral involute gears.


Author(s):  
Alessio Artoni ◽  
Massimo Guiggiani

The teeth of ordinary spur and helical gears are generated by a (virtual) rack provided with planar generating surfaces. The resulting tooth surface shapes are a circle-involute cylinder in the case of spur gears, and a circle-involute helicoid for helical gears. Advantages associated with involute geometry are well known: in particular, the motion transmission function is insensitive to center distance variations, and contact lines (or points, when a corrective surface mismatch is applied) evolve along a fixed plane of action, thereby reducing vibrations and noise emission. As a result, involute gears are easier to manufacture and assemble than non-involute gears, and silent to operate. A peculiarity of their generation process is that the motion of the generating planar surface, seen from the fixed space, is a rectilinear translation (while the gear blank is rotated about a fixed axis): the component of such translation that is orthogonal to the generating plane is the one that ultimately dictates the shape of the generated, envelope surface. Starting from this basic fact, we set out to investigate this type of generation-by-envelope process and to profitably use it to explore new potential design layouts. In particular, with some similarity to the basic principles underlying conical involute (or Beveloid) gears, but within a broader scope, we propose a generalization of these concepts to the case of involute surfaces for motion transmission between skew axes (and intersecting axes as a special case). Analytical derivations demonstrate the theoretical possibility of involute profiles transmitting motion between skew axes through line contact and, perihaps more importantly, they lead to apparently novel geometric designs featuring insensitivity of transmission ratio to all misalignments within relatively large limits. The theoretical developments are confirmed by various numerical examples.


2010 ◽  
Vol 426-427 ◽  
pp. 458-462 ◽  
Author(s):  
Y.S. Luo ◽  
Xiao Guang Fu ◽  
Xiao Jun Wang

The means of classification of the NC machine tool malfunctions is the key basis on detecting malfunctions and processing malfunctions` s signal. By defining malfunction mechanism and malfunction mode, a series of new classifications are presented. According to malfunction mechanism, mechanical malfunction are damage malfunction, lubrication malfunction, and fit malfunction. According to malfunction mode, the noise malfunction can be classified as vibration malfunction mode, the heating malfunction can be classified as heating malfunction mode, and the bad motion malfunction can be classified as deformation malfunction mode. Conclusion is that damage malfunction of gear and bearing malfunction is the most frequent malfunction whose performance formation is noise. Another conclusion is that tooth surface fatigue is the familiar malfunction, and bearing malfunction is mainly caused by surface peeling. Based on these conclusions, the vibration model of the mechanical failure is established, which lays a foundation for dealing with the follow-up signal.


2013 ◽  
Vol 79 (804) ◽  
pp. 2952-2959 ◽  
Author(s):  
Kunihiko MORIKAWA ◽  
Kouji KUMAGAI ◽  
Masanori NAGATA ◽  
Izumi UEDA ◽  
Masaharu KOMORI

Sign in / Sign up

Export Citation Format

Share Document