5725 Research on off-track force that acts on contact slider

2006 ◽  
Vol 2006.5 (0) ◽  
pp. 649-650
Author(s):  
Yuta KAMOSHITA ◽  
Hiroshi YAMAURA
Keyword(s):  
1999 ◽  
Vol 121 (4) ◽  
pp. 939-947 ◽  
Author(s):  
Kyosuke Ono ◽  
Kan Takahashi

In this study, the authors numerically analyzed the bouncing vibrations of a two-degree-of-freedom (2-DOF) model of a tripad contact slider with air bearing pads over a harmonic wavy disk surface. The general features of bouncing vibrations were elucidated in regard to the modal characteristics of a 2-DOF vibration system and design parameters such as contact stiffness, contact damping, air hearing stiffness, the rear to front air bearing stiffness ratio, static contact force and the coefficient of friction. The design of a contact slider was discussed in terms of tracking ability and wear durability. In addition, two sample designs of a perfect contact slider with sufficient wear durability were also presented.


Author(s):  
Du Chen ◽  
David D. Bogy

A nonlinear dynamic model is developed to analyze the bouncing vibration of a partial contact air bearing slider, which is designed for the areal recording density in hard disk drives of 1 Tbit/in2 or even higher. In this model the air bearing with contact is modeled using the generalized Reynolds equation modified with the Fukui-Kaneko slip correction and a new second order slip correction for the contact situation [1]. The adhesion, contact and friction between the slider and the disk are also considered in the model. It is found that the disk surface roughness, which moves into the head disk interface (HDI) as the disk rotates, excites the bouncing vibrations of the partial contact slider. The frequency spectra of the slider’s bouncing vibration have high frequency components that correspond to the slider-disk contact.


Author(s):  
Junguo Xu ◽  
Hidekazu Kohira ◽  
Hideaki Tanaka ◽  
Shozo Saegusa

Sign in / Sign up

Export Citation Format

Share Document